- 1 in Committee discussions in general. However, he's not
- 2 authorized to participate in the Committee voting
- 3 process.
- 4 Dr. Paula Annunziato of Merck will serve as
- 5 the industry representative to this Committee.
- 6 Industry representatives are not appointed as special
- 7 government employees and serve only as non-voting
- 8 members of the Committee. Industry representatives act
- 9 on behalf of all related industry and bring general
- 10 industry perspective to the Committee. An industry
- 11 representative on this Committee is not screened, does
- 12 not participate in any closed sessions if held, and
- 13 does not have voting privileges.
- Dr. Jay Portnoy is serving as the acting
- 15 consumer representative for this Committee. Consumer
- 16 representatives are appointed as special government
- 17 employees and are screened and cleared prior to their
- 18 participation in the meeting. They are voting members
- 19 of the Committee.
- 20 Disclosure of conflict of interest for guest
- 21 speakers follow applicable federal laws, regulation,

- 1 currently in.
- 2 And at that time, the influenza A strains that
- 3 were recommended were an A/Guangdong-
- 4 Maonan/SWL1536/2019(H1N1)pandemic-like virus for egg-
- 5 based vaccines and an A/Hawaii/70/2019pdm09-like virus
- 6 for cell and recombinant vaccines. The Committee also
- 7 made recommendations for the H3N2 strain, an A/Hong
- 8 Kong/2671/2019-like virus for egg-based vaccines and a
- 9 A/Hong Kong/45/2019(H3N2)-like virus for cell and
- 10 recombinant vaccines. The Committee recommended a
- 11 B/Washington/02/2019-like virus for the B component of
- 12 trivalent and quadrivalent vaccines. This is a
- 13 B/Victoria lineage virus. And the Committee finally
- 14 recommended an influenza B for quadrivalent vaccines
- 15 containing the above three vaccines, and this was a
- 16 B/Phuket/3073/2013-like virus from the Yamaqata strain.
- 17 Now, last week the WHO met and made
- 18 recommendations for next winter's Northern Hemisphere
- 19 influenza season and the vaccines that would be made
- 20 for that season. Now, the WHO recommendation I'll
- 21 remind people -- this is a consultation that includes

- 1 all of the WHO collaborating centers, of which CDC is
- 2 one. It includes the WHO central regulatory labs of
- 3 which CBER is one. But these recommendations are just
- 4 that. They're recommendations, and each country must
- 5 recommend the vaccine composition for the vaccines that
- 6 are licensed in that country. And that is what the
- 7 purpose of the VRBPAC discussion today is, for the U.S.
- 8 licensed vaccine.
- 9 But last week these were the recommendations
- 10 that the WHO made for next year's Northern Hemisphere
- 11 season. For influenza A, they recommended an
- 12 A/Victoria/2570/2019pdm09-like virus for egg-based
- 13 vaccines and an A/Wisconsin/588/2019pdm09-like virus
- 14 for cell- and recombinant-based vaccines. The
- 15 recommendation for the H3N2 component was an
- 16 A/Cambodia/e0826360/2020(H3N2)-like virus, and the
- 17 Committee recommended an influenza
- 18 B/Washington/02/2019-like virus as the B component for
- 19 trivalent and all quadrivalent vaccines. This is a
- 20 B/Victoria lineage virus. And finally, for
- 21 quadrivalent vaccines containing the above three

- 1 viruses, the Committee recommended a
- 2 B/Phuket/3073/2013-like virus. So this is what the WHO
- 3 recommended last week.
- 4 So the Committee discussion today, the VRBPAC
- 5 will discuss which influenza strains should be
- 6 recommended for the antigenic composition of the 2021-
- 7 2022 influenza virus season vaccine in the U.S. Now,
- 8 we'll have several options to consider as the
- 9 discussion proceeds for influenza, and as usual, we
- 10 will start with what the WHO recommended and then go
- 11 from there. And after you hear all the data that went
- 12 into that, the Committee will discuss and make
- 13 recommendations.
- But some of our options will be to recommend
- 15 the A/Victoria and the A/Wisconsin strains for egg- and
- 16 cell-based vaccines respectively that the WHO
- 17 recommended or possibly recommend an alternative H1N1
- 18 candidate vaccine virus. Options for influenza H3
- 19 would be to accept the WHO recommendation of the
- 20 A/Cambodia strain or make other alternative H3N2
- 21 candidate vaccine virus recommendations. For influenza

- 1 B, the options would be to consider the B/Washington
- 2 strain or recommend an alternative candidate vaccine
- 3 strain from the B/Victoria lineage or possibly a
- 4 vaccine virus from the B/Yamagata lineage. And
- 5 finally, for the fourth strain in quadrivalent
- 6 vaccines, we could start with an option of recommending
- 7 the B/Phuket strain that's the Yamagata lineage or
- 8 alternative B/Yamagata lineage or even a vaccine virus
- 9 from the B/Victoria lineage.
- 10 So the voting questions, we tried to simplify
- 11 these as much as possible. We'd like to start with
- 12 four voting questions, one for each strain, and I've
- 13 listed them here. You'll see them a little bit later.
- 14 But for the influenza A strains, we'll lump the
- 15 recommendations for the egg- and the cell-based
- 16 together, starting with what the WHO has recommended.
- 17 And this would be for the influenza A H1N1 component of
- 18 the 2021-2022 influenza virus vaccines in the U.S.
- 19 Does the Committee recommend -- and these would be the
- 20 A/Victoria/2570/2019 virus for egg-based vaccines, an
- 21 A/Wisconsin/588/2019pdm-like virus for cell- or

- 1 recombinant-based vaccines.
- 2 Again, the voting question for the influenza
- 3 H3N2 component would be would the Committee recommend
- 4 the A/Cambodia/e0826360/2020-like virus? Third
- 5 question would be for the influenza B component of
- 6 trivalent and quadrivalent vaccines in the U.S., does
- 7 the Committee recommend the inclusion of the
- 8 B/Washington/02/2019-like virus? And finally, the
- 9 fourth question would be for quadrivalent vaccines.
- 10 Does the Committee recommend the inclusion of the
- 11 B/Phuket/3073/2013-like virus from the Yamagata lineage
- 12 as a second influenza B strain in the vaccine?
- 13 That should be it for the introduction. I can
- 14 take questions, or we can -- I'll turn it back to you,
- 15 Dr. El Sahly.
- DR. HANA EL SAHLY: Thank you, Dr. Weir, for
- 17 the introduction. Before we kick off the meeting with
- 18 additional data presentation, if any of the Committee
- 19 members has a question to Dr. Weir pertaining to (audio
- 20 skip) raise your hand. And I see Dr. Cody Meissner
- 21 asking a question. Dr. Meissner, please unmute

- 1 yourself and turn on your camera if possible.
- DR. CODY MEISSNER: Thank you and thank you,
- 3 Dr. Weir, for that presentation. So I see that it's
- 4 only for influenza A H1N1 that has both a cell-based
- 5 strain and an egg-based strain. And I assume that
- 6 means that for the other three -- for the other A and
- 7 the other two Bs they grow equally well in egg-based
- 8 vaccines as well as cell-based vaccine. But the
- 9 question, how is it determined that the protection from
- 10 an egg-based vaccine is equivalent or better than
- 11 immunity induced by a cell vaccine or at least
- 12 equivalent? Do you look at serologic response in
- 13 individuals? Thank you.
- DR. JERRY WEIR: So to answer the first part
- 15 of your question, yes, I think that is the assumption
- 16 you can make is that one virus for the H3 is good
- 17 enough for both egg-based as well as cell-based
- 18 vaccines. I think last year we had a different egg-
- 19 based and a different cell-based H3 component. But the
- 20 answer to -- the more extensive answer you will hear
- 21 from Dr. Wentworth, and you sort of guessed correctly.

- 1 What you will hear is data showing how well these
- 2 different candidate vaccines cover and whether the
- 3 candidate vaccine is made in eggs or made in cells and
- 4 how well they cover viruses, both circulating viruses -
- 5 and you'll also hear how well these viruses are
- 6 covered by sera from recently vaccinated individuals.
- 7 So David will go through this all in great detail about
- 8 why the selection of each of these virus strains was
- 9 made.
- 10 DR. CODY MEISSNER: Thank you.
- 11 DR. HANA EL SAHLY: Thank you, Dr. Weir. I do
- 12 not see any additional questions right now, so it's my
- 13 pleasure to introduce Dr. Lisa Grohskopf. Dr. Lisa
- 14 Grohskopf is the associate chief for policy and liaison
- 15 activities, Epidemiology and Prevention Branch, the
- 16 Influenza Division at the Centers for Disease Control
- 17 and Prevention. She will be doing a U.S. Influenza
- 18 Surveillance overview. Dr. Grohskopf.

19

20 U.S. SURVEILLANCE

21

- DR. LISA GROHSKOPF: Thank you, Dr. El Sahly,
- 2 and good morning, everybody, and thanks for the chance
- 3 to be here today. So I'm going to be presenting an
- 4 overview of U.S. influenza surveillance, largely
- 5 focusing on the current season, '19-'20-'21. And I'll
- 6 just get started here with the next slide.
- 7 Before getting started with the data, I just
- 8 wanted to thank our CDC Influenza Division Surveillance
- 9 team led by Lynette Brammer and Alicia Budd. These are
- 10 the folks that put together the FluView report that's
- 11 posted on CDC's webpages every week. I don't myself
- 12 work in surveillance, so I'm fortunate enough to get to
- 13 present their data every year. And I'm greatly
- 14 grateful for them in assistance in getting these slides
- 15 together, as well as everything they do on a regular
- 16 basis.
- 17 So just to start out with the U.S. influenza
- 18 surveillance for the 2020-21 season, just to give you
- 19 an overall orientation, the data that I'm going to
- 20 present are from the most recent CDC FluView report.
- 21 These are data that are posted every week, generally on

- 1 Fridays. The reports that these data are drawn from
- 2 are for surveillance week 8. This is the week ending
- 3 February 27, 2021.
- 4 I'm going to start out with virologic
- 5 surveillance. These data come from influenza positive
- 6 test results that are reported to CDC weekly by the
- 7 National Enteric and Respiratory Virus Surveillance
- 8 System Labs and also WHO surveillance labs that are
- 9 located within the United States. These comprise about
- 10 300 clinical laboratories and about 100 public health
- 11 laboratories. And the results that are reported to CDC
- 12 are here, depicted in two separate graphs. The public
- 13 health laboratories are on the right and the clinical
- 14 laboratories on the left.
- 15 One thing I do want to point out is that for
- 16 ease of viewing I have made these graphs the same size.
- 17 However, if you do look at the scale on the Y axis,
- 18 that shows the number of specimens that were -- if
- 19 you're looking at the left-hand Y-axis -- the number of
- 20 specimens, the scale is different. It goes up to 500
- 21 on for the clinical laboratories and up to 100 for the

- 1 public health laboratories because there are fewer
- 2 specimen. So just keep that in mind that the bars that
- 3 you see on the graph are not proportionate to each
- 4 other.
- 5 Clinical laboratories by and large submit data
- 6 that are divided into flu A and flu B. You'll see that
- 7 the flu A isolates on the left-hand graph for the
- 8 clinical laboratories are represented in yellow and flu
- 9 B are in green. And one main take-home point here is
- 10 that, overall, the number of specimens positive that
- 11 broke down into A and B are relatively small this
- 12 season. Typically, those of you who've seen these
- 13 presentations or looked at the data before --
- 14 typically, we have nice sweeping peak that goes up much
- 15 higher in that graph by this point in the season. Flu
- 16 season's generally peaking in activity sometime in
- 17 January or February. But overall, our number of
- 18 positive specimens is low.
- 19 Another thing to draw your attention to on the
- 20 public health lab -- sorry, the clinical lab graph --
- 21 again, the one on the left -- is there's a black line

- 1 that sort of runs close to the X axis but just a little
- 2 bit above it. That represents the overall percent of
- 3 specimens positive by week. This has been very low so
- 4 far this season. Right now, it's about 0.1 percent for
- 5 surveillance week 8.
- On the right, we have the public health
- 7 laboratory graphs. This has a few more colors in its
- 8 wedging mainly because public health labs generally do
- 9 split out the influenza A viruses by subtype, H3N2,
- 10 H1N1, as well as the B viruses by lineage. But
- 11 considering the fact, then you can see that overall the
- 12 numbers are small, and again, remember that the scale
- 13 of the X axis in this graph is lower than it's a
- 14 smaller scale than the clinical laboratory graph.
- 15 Again, the take home message is overall the number of
- 16 positive isolates has been rather small for the season
- 17 so far.
- 18 Apologies, I skipped a slide there. Okay. So
- 19 next, we're going to move on to a couple of slides that
- 20 describe U.S. ILI activity. These slides both come
- 21 from ILINet, which is a network of about 3,000 out-

- 1 patient provider facilities that report weekly to CDC
- 2 the percent of outpatient visits that are for
- 3 influenza-like illness, or ILI. Now, this is a
- 4 symptom-based definition. It is not a laboratory
- 5 confirmed definition. So it's basically defined as
- 6 fever, plus cough or sore throat. It is not something
- 7 -- the data that you're going to see here, basically
- 8 what I'm trying to say, does not reflect laboratory
- 9 confirmed flu. It's a symptom-based definition.
- 10 So again, similarly to the last slide, we have
- 11 calendar week on the X axis. We have percent of visits
- 12 for ILI on the Y axis, and a number of different
- 13 seasons are represented. The season that we're
- 14 currently in right now, 2020-21, is the line
- 15 superimposed with the red triangles. The horizontal
- 16 black line that you see across the graph represents a
- 17 threshold of 2.6 percent, which is calculated from the
- 18 percent of visits for ILI during the previous three
- 19 seasons during non-influenza weeks. So that's what we
- 20 refer to in this system as the national baseline, and
- 21 it's at 2.6 percent for this season.

- 1 So take-home point here is that for the
- 2 current season -- again, the line superimposed with the
- 3 red triangles, 2020-21 -- we are below the national
- 4 baseline so far throughout the entire season.
- 5 Considering HHS regions, the regional data is also
- 6 below the national baseline. And this is lower even
- 7 then -- if you look just above the current season line,
- 8 a little bit above there's a brown line that represents
- 9 the 2011-12 season, which was a season that was largely
- 10 noted for having relatively mild influenza activity.
- 11 We're even below that with this system.
- So this is data from the same system. I think
- 13 it's about 65 percent of the ILINet providers report
- 14 data for a percent of out-patient's visits for ILI that
- 15 are broken out by age group. And here you see that
- 16 data, and there are actually two seasons here. The
- 17 peaks that you see on the left side of the graph are
- 18 from the '19-'20 season, and then the righthand half of
- 19 the graph approximately is the '20-'21 season. So it
- 20 gives you an idea of comparison with last season.
- 21 But these are data broken out by age group.

- 1 Zero to four is the youngest age group. 65 plus is the
- 2 oldest age group. You can see that we see relatively
- 3 flat activity through the 2020-21 season so far through
- 4 the righthand part of the graph. There is a slight
- 5 trend sort of slightly decreasing activity in the three
- 6 older age groups, those other than the zero to four age
- 7 group, if you look at about the last seven weeks. But
- 8 overall, low activity.
- 9 Next, moving on to influenza associated
- 10 hospitalizations. This comes from a network called
- 11 FluSurv-NET. Normally, we have a chart for this season
- 12 with the estimated cumulative hospitalization rates by
- 13 the accumulating calendar weeks generally broken down
- 14 by age group. FluView has not been producing that so
- 15 far this season mainly because the activity has been so
- 16 low. But what this system does examine is
- 17 hospitalizations associated with lab confirmed flu.
- The numbers have been quite small. Between
- 19 October 1st, 2020 and February 27, 2021 -- that's again
- 20 week 8 for surveillance week -- 14 states reported a
- 21 total of 193, which is quite small, laboratory

- 1 confirmed influenza hospitalizations. This represents
- 2 an overall cumulative hospitalization rate of 0.7 per
- 3 100,000 population, a bit too small for really
- 4 meaningful breaking down by age groups, so hence no
- 5 figure. This is lower than any season since routine
- 6 collection of data for this system began in 2005,
- 7 including, again, for reference, the 2011-12 season for
- 8 which the rate at this timepoint was about 2.3 times
- 9 higher.
- 10 The next two slides go into mortality data.
- 11 This first one is from the National Center for Health
- 12 Statistics, and these are the percent of deaths coded
- 13 as being due to pneumonia and influenza or COVID-19.
- 14 These are death certificate data, so this is not lab-
- 15 confirmed flu data. So this would be deaths that are
- 16 listed on the death certificate as being due to
- 17 pneumonia, influenza, or COVID-19. Those of you who
- 18 look at this data periodically, or who have seen these
- 19 presentations before, know that in previous seasons
- 20 this has generally been reported as pneumonia and
- 21 influenza, rather than the addition of COVID-19.

- 1 However, at about week 10 last year, if you look to the
- 2 far right on the graph -- about week 10 of last year
- 3 was when we began -- the system began adding COVID-19
- 4 coded deaths as part of routine reporting.
- 5 So there are a number of seasons represented
- 6 here. You'll see throughout the graph a pair of
- 7 undulating black lines. One of these is the seasonal
- 8 baseline, which is an estimate based on modeling data
- 9 from the previous five seasons of what we might expect
- 10 to see in terms of percent of deaths coded as being
- 11 pneumonia/influenza. 1.645 standard deviations about
- 12 that is what we call the epidemic threshold. So if you
- 13 look off to the left, that starts out with the '16-'17
- 14 season, you can see -- actually the '17-'18 season --
- 15 the redline which represents the percent of deaths that
- 16 were due to, in that season, pneumonia and flu only --
- 17 or pneumonia and influenza coding only. You can see
- 18 that the red line broke quite a bit.
- 19 As you go across the graph, you see about week
- 20 10 of last year quite a bit of surpassing of the
- 21 baseline by that red line. To sort of put things into

- 1 perspective as far as the relative proportion of deaths
- 2 that are due to pneumonia and flu as opposed to COVID-
- 3 19, some colors were added to the graph. Yellow
- 4 represents pneumonia/flu coded deaths, and the blue
- 5 patches represent COVID-19 reported deaths. You can
- 6 see that for this current season the majority of those
- 7 deaths are reported as being -- on the death
- 8 certificate as being related to COVID-19 rather than
- 9 pneumonia/influenza.
- 10 This slide is pediatric mortality. Pediatric
- 11 deaths associated with laboratory confirmed influenza
- 12 have been reportable in the United States since 2004,
- 13 and this graphs shows by calendar week the number of
- 14 deaths hitting this definition for the last several
- 15 seasons, beginning with the 2017-18 season on the far
- 16 left. For the 2020-21 season so far within this
- 17 system, only one pediatric death has been reported so
- 18 far for this season.
- 19 So just an overview on influenza activity
- 20 domestically for this season, U.S. influenza activity
- 21 for 2020-21 has been low so far. The percent of

- 1 influenza specimens testing positive as reported by the
- 2 clinical laboratories unusually low, again, 0.1 percent
- 3 for the most recent reporting week. Influenza-like
- 4 illness, ILI, activity has been below the national
- 5 baseline, and the cumulative hospitalization rate
- 6 reported through FluSurv-NET, 0.7 per 1,000, which is
- 7 again the lowest since 2005 and even lower than the
- 8 2011-12 season.
- 9 The causes for this, the ideologies for this
- 10 are likely multifactorial and could well be related to
- 11 COVID-19 mitigation strategies such as use of masks,
- 12 social distancing, school closures, and also things
- 13 related to travel such as people travelling less and
- 14 also, in some cases, restricted travel. Importantly,
- 15 it's not possible to predict whether this is going to
- 16 continue to hold for the rest of the year, and it's
- 17 also not possible to predict on the basis of these data
- 18 the extent and timing of influenza activity for 2021-
- 19 22, next season.
- Now, I just have a very, very brief update on
- 21 vaccine effectiveness. For the last few years, we've

- 1 also presented in this talk updates on flu VE from the
- 2 CDC networks. The update this year is quite brief. In
- 3 fact, this is the only slide we have.
- 4 Due to the very low activity within the United
- 5 States and, of course, by extension within the CDC VE
- 6 networks this season, there are no interim VE estimates
- 7 available. The CDC networks continue to collect data
- 8 as it comes in and to monitor activity. However, there
- 9 is no interim estimate available from any of them, and
- 10 estimates, as far as being available later in the
- 11 season, are completely dependent on having sufficient
- 12 influenza activity within the networks in order to be
- 13 able to calculate a VE. So that is all I have for my
- 14 talk. Thank you very much for your attention.
- 15 **DR. HANA EL SAHLY:** Thank you, Dr. Grohskopf,
- 16 for this presentation. As the Committee members raise
- 17 their hands for those who have questions so we can
- 18 (audio skip). I have a quick question to get us
- 19 started. Did we see any changes in the vaccine
- 20 coverage this year in terms of the uptick of the flu --
- 21 the seasonal flu vaccine?

- 1 DR. LISA GROHSKOPF: There is ongoing
- 2 preliminary data on coverage that's being collected and
- 3 posted week by week on FluVaxView, which is another CDC
- 4 webpage. There are coverages estimated for different
- 5 populations using different surveillance systems, and
- 6 there are some new data sources that are being used
- 7 this year. Overall coverage, depending upon the group
- 8 that you look at, looks about on par with last year.
- 9 There looks to have been in some populations -- some
- 10 age groups fairly high demand in the beginning of the
- 11 year but then sort of leveling off later on in the
- 12 year. There are also some differences in coverage by
- 13 race and ethnicity in some of those systems. But I
- 14 would say overall not an enormous different between --
- 15 some groups showing slightly lower, some slightly
- 16 higher depending on the surveillance system used in
- 17 which population group.
- 18 DR. HANA EL SAHLY: Any indication the lack or
- 19 the tremendous decrease is actually partially related
- 20 to public health resources --
- 21 MR. MICHAEL KAWCZYNSKI: Sorry, Dr. El Sahly,

- 1 we need you to move the phone closer to you. We can't
- 2 hear you.
- 3 DR. HANA EL SAHLY: Oh, okay. So any
- 4 indication that the decrease in the number of cases is
- 5 at least partly related to a lot of our public health
- 6 efforts being directed elsewhere?
- 7 DR. LISA GROHSKOPF: That's a good point. I
- 8 think one thing that was noted early on in FluView
- 9 reports and also in other surveillance systems was that
- 10 one thing to be considered is that, particularly at the
- 11 beginning of the season -- earlier in the COVID-19
- 12 epidemic, one might expect that testing practices for
- 13 flu might have changed. One might surmise that it was
- 14 possible that people might not have been going out to
- 15 get tested. But one thing that is interesting even in
- 16 the face of all that is that of the specimens in the
- 17 reporting on testing that CDC has seen, for example in
- 18 the virologic characterization data that was reported
- 19 on the first slide I presented, the percent of tests
- 20 that were positive is very low, which is also something
- 21 important to note that one might not think would be

- 1 influenced, say, based on testing practices or people's
- 2 likelihood of getting tested or clinician behavior.
- 3 DR. EL SAHLY: Okay. Thank you. Dr. Michael
- 4 Kurilla, please unmute yourself and turn your camera
- 5 on.
- 6 DR. MICHAEL KURILLA: Thank you, Hana. Lisa,
- 7 related to the testing, I'm wondering from the ILI
- 8 standpoint it would seem to me that a lot of the
- 9 routine things of people, you know, in traditional flu
- 10 seasons calling their doctor and going into their
- 11 office, that's not happening. I would also think that
- 12 most people, if they had flu-like symptoms or
- 13 influenza-like illness, they'd be worried about COVID,
- 14 and it may be that they'd get a test for COVID. And if
- 15 it's negative, they just feel so good they don't bother
- 16 about anything else. I'm wondering how much dual
- 17 testing for COVID and flu is going on so that in people
- 18 who are symptomatic, if they're negative for COVID, we
- 19 actually know whether that's flu.
- DR. LISA GROHSKOPF: That's a good question,
- 21 and I don't -- I can try to get more information on

- 1 that during today. I don't know off the top of my head
- 2 about the prevalence of dual testing, although one
- 3 would imagine it would be happening. The surveillance
- 4 team does note that the ILI numbers should be
- 5 interpreted sort of cautiously, again, given the
- 6 possibility that the ability to detect ILI has been
- 7 influenced somewhat by the ongoing pandemic and testing
- 8 practices. But as far as dual testing, I can try to
- 9 get more information about that today if it's
- 10 available.
- 11 DR. MICHAEL KURILLA: Thanks.
- DR. HANA EL SAHLY: Thank you. Dr. David Kim,
- 13 please turn your camera on. Dr. David Kim.
- 14 CAPT. DAVID KIM: Thank you. Other than the -
- 15 for the biologic surveillance, other than the numbers
- 16 that were much lower than the years past, did you
- 17 notice anything different during the current season
- 18 regarding strain predominance or any sort of pattern
- 19 that you saw compared to the years past? I realize
- 20 that the comparison can't be directly made but at least
- 21 some preliminary analyses on that.

- 1 DR. LISA GROHSKOPF: Good question. FluView
- 2 normally does report out antigenic and genetic testing
- 3 data based on the samples that are tested and has not
- 4 been doing that so far this season simply because the
- 5 sample size has been so small. As far as further
- 6 detail on that, I'm think I'm going to defer to Dr.
- 7 Wentworth to see if he has any further information on
- 8 that. But again, it has been highly unusually this
- 9 season in terms of the low number of activity -- the
- 10 low amount of activity, the low number of positive
- 11 specimens. It's just a very, very, very small sample
- 12 size. It's a good question.
- 13 DR. HANA EL SAHLY: Thank you. Dr. Paul
- 14 Spearman, please turn your camera on.
- 15 **DR. PAUL SPEARMAN:** Thank you and thanks for
- 16 that presentation. You know, I was so struck by the
- 17 low numbers, especially the graphs for pediatric deaths
- 18 where there doesn't even look like there's any season
- 19 at all. It's amazing, and your discussion of the
- 20 multifactorial nature really leads me to wonder what
- 21 are the real causes of that. I would have -- you could

- 1 have predicted that, you know, masking and some
- 2 distancing and avoiding large gatherings could affect
- 3 the flu epidemics.
- But I would have expected this degree, and
- 5 it's just -- it's such an amazing finding at the same
- 6 time when those measures were not really preventing the
- 7 large winter uptick in COVID cases. So it's just -- is
- 8 there -- or will there -- I don't know if anyone can
- 9 really answer this, but will there be ways of teasing
- 10 out what looks like it works much better than a vaccine
- 11 to prevent flu? Can we really do this, you know, in an
- 12 effective way going forward? Thanks.
- 13 DR. LISA GROHSKOPF: So I imagine that there
- 14 will be future examination of those questions, although
- 15 I'm not really certain about the specifics of kinds of
- 16 studies at this point. I think it's also important to
- 17 consider that flu seasons do vary, and we do sometimes
- 18 have seasons that, you know, barely break the epidemic
- 19 threshold. For example, 2011-12 was one of those
- 20 seasons. This has definitely been lighter.
- 21 So I think in the space of all this, it's

- 1 important to also consider the fact that flu is still
- 2 unpredictable, and we really don't know how it's going
- 3 to behalf in the future. That being said, it does seem
- 4 like something happened this year, and there were
- 5 changes in behavior that warrant further investigation
- 6 as far as the degree of their impact and how they can
- 7 be used in the future.
- 8 DR. HANA EL SAHLY: Paul, I think this
- 9 question came up in different circles, the differential
- 10 of the effect of the social measures against flu versus
- 11 SARS-CoV-2. I mean, the main difference that we also
- 12 have to factor in is the differential in
- 13 susceptibility. Anyone older than one year of age has
- 14 a degree of immunity against one flu or another but
- 15 nothing against SARS-CoV-2, so that also changes the
- 16 effectiveness of the approaches. Dr. Mike Levine. Dr.
- 17 Levine, you're muted.
- DR. MYRON LEVINE: Can you hear me now?
- 19 DR. HANA EL SAHLY: Yes, sir.
- 20 DR. MYRON LEVINE: Thank you. My question was
- 21 very similar to Paul Spearman. The striking virtual

- 1 disappearance of influenza is so notable, and in theory
- 2 it might -- if the surveillance division has data,
- 3 might be a way to tweeze out the role of kids not going
- 4 to school, the role of masking, the role of social
- 5 distancing in certain subpopulations. But one also has
- 6 to wonder whether with the very widespread SARS-CoV-2
- 7 infections is it possible that the innate immune
- 8 response, interferons, et cetera, to SARS-CoV-2 has
- 9 somehow also in some way being responsible for less
- 10 influenza. Whatever the reason, it's going to
- 11 stimulate this question again and again, and there's
- 12 been so much in the public arena whether masks work or
- 13 not, whether schools are involved in transmission. And
- 14 maybe the answers in part for COVID can come from
- 15 figuring out what happens with flu.
- 16 DR. LISA GROHSKOPF: Definitely this season
- 17 will yield a lot of important research questions for
- 18 consideration. Yeah.
- 19 DR. HANA EL SAHLY: Thank you. Colonel Andrew
- 20 Wiesen.
- 21 COL. ANDREW WIESEN: Thanks, Lisa. It was a

- 1 great presentation. I just had a question about how
- 2 much effort has gone into the potential data
- 3 misclassification. I mean, you mentioned it, and
- 4 certainly it's true for deaths that there's a large
- 5 portion of the COVID deaths that also had flu. When
- 6 you take all the flu cases out, it's like half, or it's
- 7 a large proportion. And that's where we have the best
- 8 information, right, because if you die, you're going to
- 9 likely get tested for flu as well as COVID.
- 10 The testing was brought up by a previous
- 11 speaker. A lot of times people just get a COVID test,
- 12 and if that's positive or negative, they don't follow
- 13 up. And so while I agree that the social mitigation is
- 14 almost certainly somewhat responsible, I think there's
- 15 a lot of data misclassification. And I think that flu,
- 16 while suppressed, is certainly not as suppressed as we
- 17 might otherwise think because people simply aren't
- 18 coming in or getting tested for it.
- 19 So I wonder how you might approach that issue
- 20 of trying to determine how many cases could have had
- 21 either dual or misclassified -- it says it was COVID

- 1 because they were positive for COVID, but they were
- 2 actually a flu case too. Or maybe flu was the
- 3 predominate reason for their systems, hospitalizations
- 4 or otherwise, because I don't want to oversell the
- 5 suppression of flu this year when it's really tough
- 6 understanding now when you look at the death count
- 7 lately has not come down nearly as fast as the case
- 8 counts and hospitalization counts. And part of me
- 9 wonders how much of that is just residual because this
- 10 would have been peak right now the last couple of
- 11 weeks. This would have been peak deaths for flu
- 12 season, too. So how much of that is actually flu still
- 13 that's just being classified as COVID and is not. So
- 14 just your thoughts on that.
- 15 **DR. LISA GROHSKOPF:** I think based on my
- 16 understanding of the surveillance systems that -- for
- 17 example, ILINet and also the NCHS data -- those systems
- 18 don't access testing data, so NCHS receives, for
- 19 example, data from death certificates. And of course,
- 20 you know, we know that there are limitations to death
- 21 certificate data. It's based on coding, and those

- 1 individuals may not have been tested.
- A simple answer would be, you know, trying to
- 3 review all of those charts. I don't know about the
- 4 feasibility of doing that within this particular
- 5 system. It's possible that there are other studies
- 6 that are examining that, but within these networks I
- 7 don't know if we can get at that data. I think those
- 8 are all important points, though. Some of the routine
- 9 CDC flu surveillance examines lab-confirmed disease.
- 10 For example, pediatric mortality the hospitalization
- 11 system does. But for some of the systems, ILINet and
- 12 NCHS, we just don't have testing data.
- 13 DR. HANA EL SAHLY: Thank you. Dr. Cody
- 14 Meissner.
- 15 DR. CODY MEISSNER: -- presentation. Thank
- 16 you for that interesting presentation. One more point
- 17 I wanted to add to the discussion that Paul and Mike
- 18 raised is Respiratory Syncytial Virus. And we have had
- 19 almost disappearance of bronchiolitis at our hospital
- 20 and, I think, many other hospitals as well. So we
- 21 think of RSV hospitalization as primarily among infants

- 1 and young children who are less than 12 months of age
- 2 and maybe less than 24 months of age, but most of them
- 3 are in the first year of life. So, I mean, that leads
- 4 me to believe that the influenza results that you're
- 5 reporting are probably real in terms of a reduction
- 6 because it seems to be all the respiratory viruses are
- 7 down. And somehow, it makes it harder to say not going
- 8 to school accounted for a reduction in RSV
- 9 hospitalizations because those children don't go to
- 10 school who are most likely to be hospitalized. So I
- 11 think there's something more here that I'm not sure we
- 12 fully understand. Thank you.
- 13 DR. LISA GROHSKOPF: I agree. There have
- 14 definitely been a lot of different behaviors that were
- 15 introduced and encouraged by -- including some that
- 16 maybe we don't talk about as much. People may be
- 17 washing their hands more often, may be using more
- 18 sanitizer. It's really hard to know. I think one
- 19 thing that comes into the CDC recommendations for
- 20 preventing flu in addition to vaccination are everyday
- 21 preventative activities, which in our communication

- 1 materials point out, you know, these might help you
- 2 prevent getting sick from other respiratory virus as
- 3 well, so things like, again, washing your hands,
- 4 avoiding sick contacts. And one could guess that
- 5 probably there are more of both of those things going
- 6 on this year in addition to the fact that we're just
- 7 not as mobile as a population.
- 8 DR. CODY MEISSNER: Thank you.
- 9 DR. HANA EL SAHLY: Thank you. There is time
- 10 for two more questions, and the first is coming from
- 11 Dr. Amanda Cohn.
- 12 DR. AMANDA COHN: Hi, Lisa. Thank you. I
- 13 think you actually just responded to part of the
- 14 comment I wanted to make, which is I think it's not
- 15 only the social distancing. But I also wonder the
- 16 contributions of overall travel changes over the course
- 17 of the pandemic, both international and domestic. And
- 18 I think that is -- you know, I think it's likely a
- 19 combination of all of these factors, but I think that
- 20 will also be interesting to evaluate in the future.
- 21 DR. HANA EL SAHLY: Thank you. And the last

- 1 question is from Dr. Archana Chatterjee.
- DR. ARCHANA CHATTERJEE: Yes, thank you. Just
- 3 a follow up comment to Dr. Meissner's comments and that
- 4 is with regard to the young children who are not in
- 5 school. A lot of them, I think -- I'm trying to
- 6 remember, but somewhere I had read a long time ago that
- 7 about 70 percent of children in the U.S. in that age
- 8 group are actually in childcare that is outside the
- 9 home in aggregate settings. So I think that a lot of
- 10 those have been closed as well. And so these children
- 11 are not coming in contact with children outside the
- 12 home.
- 13 DR. LISA GROHSKOPF: Yeah. Good point.
- DR. HANA EL SAHLY: Okay. Thank you, Dr.
- 15 Grohskopf and Committee members for this discussion.
- 16 Next is Dr. David Wentworth. Dr. David Wentworth is
- 17 the Branch Chief, Influenza Division, Virology
- 18 Surveillance, and Diagnostic Branch of the Centers for
- 19 Disease Control and Prevention. Dr. Wentworth is going
- 20 to give us a presentation on the global influenza virus
- 21 surveillance and characterization. Dr. Wentworth.

•	1	
	ı	

2 GLOBAL INFLUENZA VIRUS SURVEILLANCE AND

3 CHARACTERIZATION

4

- 5 DR. DAVID WENTWORTH: Thank you very much. I
- 6 have a lot to cover. I will move rather quickly but
- 7 hopefully easy enough to follow for everybody. I just
- 8 put together a brief outline to remind everybody what
- 9 we'll be talking about.
- 10 We're going to do an overview of the WHO
- 11 vaccine consultation meeting and the recommendations
- 12 that Jerry went over. We'll talk a bit about the
- influenza activity, A(H1N1)pdm09 viruses, and I'll
- 14 describe the major highlights. If you recall, I
- 15 covered this in more depth in the 2020 VRBPAC meeting,
- 16 and while the recommendation for the H1N1 is an update
- 17 for the Northern Hemisphere 2021 and 2022 season, it is
- 18 the same as the Southern Hemisphere recommendation for
- 19 the 2021 season that's upcoming.
- For the H3N2 viruses, I'll be discussing in
- 21 greatest detail today of all the subtypes, and that's

- 1 an update to the recommendation. And for the
- 2 B/Victoria lineage viruses, I will also cover some
- 3 aspects. The recommendation remains the same, but we
- 4 have seen the expansion of a previously small kind of
- 5 subclade of viruses that I'll point out to you that
- 6 we're keeping an eye on for future. And with the
- 7 B/Yamagata lineage, I'll be very brief. This lineage
- 8 is really impacted by a number of things, and there's
- 9 not very many viruses around. And we can discuss that
- 10 in question and answer if there's time. Okay.
- 11 So for the meeting, this really results from
- 12 year-round surveillance conducted by the GISRS or the
- 13 Global Influenza Surveillance and Response system. We
- 14 have all the members of the GISRS including the WHO
- 15 collaborating centers -- there's six, and the CDC is
- 16 one of them -- National Influenza Centers -- there's
- 17 more than 140 around the globe -- WHO essential
- 18 regulatory laboratories, like the FDA CBER; WHO H5
- 19 reference laboratories, and it's supported by many
- 20 countries and partners, including GISAID, which is a
- 21 global influenza sequence sharing database system

- 1 that's been taken advantage of for the SARS coronavirus
- 2 pandemic as well. So the meeting was held on February
- 3 17th to the 25th. It was a virtual meeting with a time
- 4 difference of 17 hours among the various participants.
- I was one of the chairs, along with Dr. John
- 6 McCauley, and we had the other advisors and directors
- 7 of the WHO CC's and essential regulatory capacities as
- 8 voting members, as representatives for their
- 9 corresponding WHO CC and ERL. There were 57 observers
- 10 from WHO CCs, WHO ERLs, academia, H5 reference
- 11 laboratories in the veterinary sector, and we also had
- 12 experts from WHO regional offices and headquarters.
- 13 The recommendations in front of you is for the Northern
- 14 Hemisphere 2021 to 2022 season for quadrivalent --
- 15 sorry, I'm getting a call.
- 16 MR. MICHAEL KAWCYZNSKI: Dr. Wentworth, we
- 17 lost your audio. Dr. Wentworth, we lost your audio.
- 18 Hold on a minute. We're going to take -- just give us
- 19 a second here, unless it's just me, but I believe we
- 20 lost audio. Somebody else confirm -- studio, give us a
- 21 moment. We're going to take a quick -- like a one-

- 1 minute break. We're just going to put a note in here
- 2 so he can dial back in.
- Your audio -- there you go. You've got it.
- 4 It's all right -- while he's reconnecting -- not a
- 5 problem. Sorry about this, everyone. We're just going
- 6 to take a momentary little technical break while Dr.
- 7 Wentworth dials back in. Not a big deal. It does
- 8 happen. Here he comes back in. No problem. He's
- 9 coming in now. Happens to the best of us. I see him
- 10 dialing in now. Come on. We can do it.
- 11 So those of you -- thank you online for
- 12 watching or 165th VRBPAC meeting. While we're waiting
- 13 on Dr. Wentworth to connect his audio, a good time to
- 14 grab a cup of coffee. I'm just going to call him in
- 15 directly. I wish I knew how to juggle and keep you all
- 16 entertained just for a moment, but I'm waiting for Dr.
- 17 Wentworth to call me in. Put that up for a second here
- 18 just while we're waiting.
- 19 Those of you -- I love our members. They're
- 20 having a little fun with me. They're, like, doing
- 21 puppets and all that other stuff. There you are. It

- 1 was funny. I know what you did. You clicked on the
- 2 arrow, and you clicked "disconnect your phone." It was
- 3 sort of a little humorous. That's all right. We're
- 4 all back, David. Take a deep breath.
- 5 **DR. DAVID WENTWORTH:** I apologize
- 6 wholeheartedly.
- 7 MR. MICHAEL KAWCZYNSKI: That's okay.
- 8 DR. DAVID WENTWORTH: I keep getting messages
- 9 now, and it wasn't connecting me back to the
- 10 conference. I apologize to all the listeners.
- 11 MR. MICHAEL KAWCZYNSKI: So take a deep breath
- 12 and pick up where you left off.
- 13 DR. DAVID WENTWORTH: Basically, these were
- 14 the recommendations. The ones in blue were the new
- 15 viruses being recommended. And I did want to point out
- 16 one thing, that the cell viruses, even when they have
- 17 the same name, are different recommendations than the
- 18 egg viruses. The egg viruses have been isolated in
- 19 eggs, and they have sometimes different amino acid
- 20 changes in order for them to replicate in eggs.
- And so we call that an egg-cell pair. So for

- 1 example, the Cambodia is an egg-cell pair. The egg
- 2 virus is slightly different than the cell virus, and
- 3 the manufacturers know this. And it's listed
- 4 specifically on the candidate vaccine viruses that are
- 5 available through the WHO website. That's true for all
- 6 egg and cell viruses. This is why sometimes they have
- 7 different names. We weren't able to get an egg-cell
- 8 pair, but we have something similar. Okay.
- 9 I might want to stop using that arrow if I'm
- 10 going to cause trouble with it. Okay. So these are
- 11 the number of specimens processed by GISRS, and what
- 12 you can see over the past two seasons from 2018 to 2021
- 13 the black line there is the 2020 season. And then
- 14 towards the end of that year, you know, as you get to
- 15 weeks 51 and 52, 53, it starts to decline. And then
- 16 that picks up again for the next year in the beginning
- 17 of the year. And so that's a pretty normal looking
- 18 number of specimens processed, and so these were tested
- 19 for influenza.
- To go back to that discussion we had earlier,
- 21 there was a lot of specimens being processed but not

- 1 very many percent positivity, and that's what Dr.
- 2 Grohskopf mentioned. So the percent positivity was way
- 3 down, and this is real. Okay. I won't belabor this
- 4 graph because you can see it, but it basically came
- 5 down as SARS emerged and then became a pandemic in the
- 6 beginning. So if you follow the red line, you see that
- 7 sharp decline when all the mitigation factors were
- 8 coming in at the end of our last flu season. Okay.
- 9 This shows you the global circulation of
- 10 viruses, and, again, it just illustrates that we didn't
- 11 have a lot of viruses to work with. You can see that
- 12 on the Y axis of these charts there's thousands on the
- 13 chart on the left from the 2019 to 2020 season. In the
- 14 chart on the right, the 2020 to '21 season, these are
- 15 in the hundreds. But they are there, and we can still
- 16 analyze them. We can't ever analyze 4,000 viruses for
- 17 each group anyway, so we do have representatives to
- 18 analyze.
- 19 And this is showing influenza activity
- 20 globally with the lighter colors being zero to 10
- 21 percent. And as you can imagine, basically most of

- 1 this was low, and we did see some regions around the
- 2 globe, like Western Africa, that had a little bit
- 3 higher influenza incidence. Now, countries and areas
- 4 as well as territories that shared viruses with WHO CCs
- 5 are lower than normal because they weren't able to
- 6 isolate and characterize as many viruses. There were
- 7 fewer viruses, and they also were very busy with the
- 8 COVID pandemic. So that's kind of a double hit on what
- 9 could be sent to WHO CCs. Many of the GISRS
- 10 laboratories are the same around the world -- are the
- 11 same laboratories identifying SARS-coronavirus-2, the
- 12 cause of COVID-19. Okay.
- 13 So this is the percentage of influenza viruses
- 14 by type and subtype, and what you can see here is
- 15 they're both -- A and B circulated rather equally, with
- 16 B viruses being 55 percent of the viruses, so
- 17 predominating a little bit more. And for the B
- 18 viruses, the B/Victoria virus is the one that
- 19 predominated. So this other dark one here is the B
- 20 lineage is not determined, but there's very few
- 21 B/Yamagata lineage viruses circulating. And it's less

- 1 than 1 percent.
- For the A viruses, the (H1N1)pdm09 viruses
- 3 represented less than the H3N2 viruses. But this was
- 4 regionally different. It's by country.
- 5 This shows how many viruses were genetically
- 6 characterized by WHO CCs in this two regions of time,
- 7 September 2019 to January 2020 and February 2020 to
- 8 January 2021. What you can see is there is a
- 9 reduction, and this timeframe is -- for the orange
- 10 bars, you can see a bit of a reduction. But we were
- 11 able to sequence a lot of viruses towards the end of
- 12 our last season, so there was many viruses in this late
- 13 spring, so after the last vaccine strain selection for
- 14 the Northern Hemisphere.
- 15 And now, I'm going to turn your attention to
- 16 (H1N1)pdm09, subtype influenza A viruses. This is
- 17 specifically showing their activity. In the percent
- 18 positivity, you can see we had some in North America
- 19 and in Western Africa and a little bit Central Africa
- 20 and in Asia.
- Now, this is a similar chart to what I showed

- 1 you before, but now it's focused on H1N1. And so it's
- 2 very low. It's the red line for 2021, and the black
- 3 line for 2020.
- 4 Now, I'm going to focus your attention in on
- 5 this phylogenetic tree a little bit. I know these are
- 6 complicated, but it really helps us define what we're
- 7 doing and why we're selecting what we're selecting. So
- 8 at the bottom of this tree where I've placed the arrow,
- 9 there's three substitutions there. They really form
- 10 the main branch of all the viruses that have circulated
- 11 for the last about three or four years. And what you
- 12 can see as you go up this tree is continuing increase
- 13 or evolutionary distance away from that bottom arrow.
- 14 And I have boxed two regions of the tree. So
- 15 in this region here, this yellow box that I'm pointing
- 16 to these amino acids, D187A and Q189E, those are at the
- 17 base of this main subclade of viruses that we call 5A1.
- 18 That's where the current cell-prototype vaccine is,
- 19 Hawaii/70/2019. And so that's what we were vaccinated
- 20 with last fall and winter.
- 21 And then the top of this tree, there's a

- 1 branch of viruses really breaking off at this N156K
- 2 amino acid substitution in the hemagglutinin. And the
- 3 new recommended prototype, I've put an arrow there --
- 4 was Wisconsin/588. And this is in this clade 5A2, so
- 5 the red bar represents all of these viruses that are
- 6 the tips of this tree. You can see all these little
- 7 dots. Those are each individual hemagglutinin genes on
- 8 every virus that was isolated.
- 9 And this tree is full of information. It's
- 10 actually more than a phylogeny. It's an integrated
- 11 dataset that also shows geography or phylogeographic.
- 12 So the blue tips represent North America. Green would
- 13 be Europe, and that's illustrated in this heat map,
- 14 which starts on the very far righthand side. It starts
- 15 in February 2020 and goes to November here. You can
- 16 see that. And so you can also see when viruses were
- 17 circulating and where they were circulating in that
- 18 heat map.
- 19 Now, lastly, I'm going to focus your attention
- 20 to some antigenic information, so how well these
- 21 viruses are neutralized by sera to Hawaii/70, the

- 1 recommended cell vaccine prototype. And so that's
- 2 shown in these two columns here. And what you can see
- 3 is sera from Hawaii/70 will start back down and towards
- 4 the bottom of the tree here. Sera from Hawaii/70 well
- 5 neutralized all these viruses in subclade 7, those in
- 6 subclade 5B, 5A1, and 5A.
- 7 So when you get to the 5A2 viruses, you see
- 8 all these dark bands. These represent reductions from
- 9 homologous titer between 16 and 32-fold or eight- and
- 10 32-fold, and so that's shown in this column here. I'll
- 11 just drop that arrow down the column. And so you can
- 12 see how poor this group of viruses reacts with that
- 13 serum. And this is the newer emerging group of viruses
- 14 where the new recommended prototype is. Okay.
- This shows you the clade distribution from
- 16 September 2020 to February 2021. And so as was
- 17 mentioned we haven't seen a lot of influenza
- 18 circulation or H1N1 circulation in particular, and we
- 19 have a much smaller number of clades co-circulating in
- 20 a few regions. We saw 5A1-187 viruses in parts of
- 21 Europe and Africa predominating. We saw 5A2, these

- 1 ones with the 156K substitution in red, circulating in
- 2 Asia and a few 5B viruses circulating in the United
- 3 States and other regions.
- 4 Now, this slide illustrates the reactivity of
- 5 viruses with their antisera to the antigens that are
- 6 recommended for the Northern Hemisphere 2020-21 season.
- 7 And so there's the cell recommended prototype, so
- 8 antisera against that, or antisera to the egg
- 9 recommended prototype, A/Guangdong-Maonan/1536/2019.
- 10 And while part of the issue here is this period there
- 11 weren't very many viruses if you use this cutoff of
- 12 September 1, 2020 to January 31, 2021, so if we
- 13 included viruses from the springtime, you'd get a lot
- 14 more viruses. And we'd see a certain trend.
- 15 Nonetheless, the few viruses that were able to be
- 16 analyzed, 92 percent were considered like the vaccine,
- 17 and there wasn't a huge difference between the egg or
- 18 the cell in this reactivity pattern.
- 19 This slide is something called antigenic
- 20 cartography. Jerry Weir mentioned that we would talk
- 21 about this. And what this is, is the way to take these

- 1 HI tables or hemagglutination inhibition or virus
- 2 neutralization tables where each virus is compared
- 3 against the reference sera, against the homologous
- 4 titer. They become very big tables of numbers. And
- 5 this is a way to take it and map the data on two
- 6 dimensions.
- 7 And so if we take antisera, for example,
- 8 against, Guangdong-Maonan right here -- and that's
- 9 represented by this egg-shaped dot -- that's where that
- 10 antigen lives. If we take antisera against that, it
- 11 reacts very well with all these blue dot viruses which
- 12 represent viruses from the last 12 months. The grey
- 13 dots represent viruses preceding that. And then if we
- 14 take antisera -- so you can see this antigenic distance
- 15 is pretty far until you get to this other egg virus
- 16 here, A/Victoria/2570 egg. But it's now very close to
- 17 all these red dot viruses.
- 18 And the difference between the blue and the
- 19 red is -- one of the major differences anyway is this
- 20 position at 156. So if it's an asparagine or an N,
- 21 they're color-coded blue here, and they have a certain

- 1 antigenic phenotype. And if they're -- it just shows
- 2 that one amino acid in blue can really dramatically
- 3 impact the antigenic makeup of the virus. This is a
- 4 very important antigenic region site assay.
- 5 So 156 is in red there, so you can see that.
- 6 So this is data that I've been pointing at from the CC
- 7 in London, the Francis Crick Institute, but this is
- 8 also true from the CC in Melbourne. So you can see we
- 9 all compare our data and see if we're having the same
- 10 trends.
- Now, this is looking at human post-vaccination
- 12 serum analysis with H1N1 viruses, and I think this is -
- 13 I'll be pretty brief because of our time situation.
- 14 But we're comparing the geometric mean titers relative
- 15 to the cell propagated Hawaii/70, so that's this column
- 16 here where we have -- and basically, people were
- 17 vaccinated with Hawaii/70-like viruses. They were
- 18 either vaccinated with Hawaii/70 if they got the cell -
- 19 like Flucelyax or the recombinant like Flublok. And
- 20 they were vaccinated with Guangdong-Maonan-like viruses
- 21 if they were vaccinated with an egg-based product.

- 1 So what you can see is a pretty good
- 2 stimulation of the immune response from a lot of panels
- 3 of sera, from 6- to 35-month-old up here at the top, to
- 4 three- to eight-year-olds, nine to 17, the adults, 50
- 5 to 64 elderly, and 65 and older. And sometimes what
- 6 you see is certain age groups still have good cross
- 7 reactivity against a variety of viruses, and what we're
- 8 doing here is I should have mentioned maybe more on the
- 9 evolutionary tree. But we talked about the clades.
- 10 This is clade 5A1, so this is a virus in clade 5A1 used
- 11 as the antigen for the serum to inhibit. So it
- 12 inhibits it very well.
- Now, when we go to a 5A2 with these 156K
- 14 viruses, there's poor inhibition, so there's much
- 15 stronger reduction in the geometric mean titer. And
- 16 when it's red, it's significantly reduced. So that's
- 17 where we're seeing significant reductions in that
- 18 group, whereas the 5Bs, which also co-circulated to a
- 19 limited extent, do show cross-protection of this 5A1
- 20 vaccine or the sera from people that were vaccinated
- 21 with the 5Al vaccine. Same with the clade 3, which is

- 1 Idaho/7 and same with clade 7, which is Louisiana/01.
- 2 And the difference you see here is primarily in the
- 3 pediatric population which haven't seen very many
- 4 influenza viruses or been vaccinated by very many
- 5 influenza viruses. So this vaccine is basically likely
- 6 stimulating memory that does cross-react with other
- 7 clades.
- And because there's been a lot of interest in
- 9 the human serology at the VRBPACs, I've included
- 10 another analysis just of a smaller subset so that you
- 11 can see data a little differently than just
- 12 statistically analyzed. And so here, I won't belabor
- 13 this. We call these bubble plots, and what they're
- 14 really showing is the pre-vaccination titer against
- 15 each antigen versus the post-vaccination titer against
- 16 that antigen.
- 17 And you can look at -- so, for example, kids,
- 18 which I just pointed out before -- the young children,
- 19 six to 35 months old, that vaccine does induce good
- 20 immunity, about 80, not whopping but that's normal for
- 21 younger kids. And it's not inducing lots of cross-

- 1 protection against these variant groups, particular
- 2 this Wisconsin/588. Whereas the older adults, you can
- 3 see that when you get vaccinated with this 5Al vaccine
- 4 you get a 171. You've moved all these people up. They
- 5 have higher neutralizing titer, but they also have
- 6 higher neutralizing titers to what would be considered
- 7 an antigenic mismatch virus.
- 8 I think that's important to point out. You
- 9 know, sometimes it's not as high as you'd like to see.
- 10 But being vaccinated does help even a little bit
- 11 against these more divergent viruses.
- So to summarize the (H1N1)pdm09 viruses, they
- 13 predominated in some countries in the Northern
- 14 Hemisphere. This was in Africa, such as Egypt, Niger,
- 15 Togo, in Asia, and in Europe. The HA gene sequences
- 16 belong to 61A. That's the major uber-clade that I
- 17 didn't even show you. That's all that entire tree
- 18 basically. And there's a bunch of subclades in that
- 19 tree, the clade 5A -- these are genetic groups is what
- 20 we call subclades -- 5B that are co-circulating. And
- 21 the majority of those now belong to this 5A clade, and

- 1 it's further diversified into two 5A subclades, the
- 2 5Als and the 5Als. And the 5Als have these
- 3 characteristic D187A chains at the base of that clade,
- 4 and the 5A2s have these characteristic N156K chains at
- 5 the base of that clade, along with these other changes
- 6 that likely impact their antigenicity to a little bit
- 7 lesser extent.
- 8 So for the ferret antisera to the reference
- 9 (H1N1)pdm09 viruses like Guangdong-Maonan/SWL1536 from
- 10 2019, they will recognize many of the circulating
- 11 viruses from this time period. However, they very
- 12 poorly recognize the 5A2 156K viruses. In contrast,
- 13 you know, the post-vaccination sera collected from
- 14 humans vaccinated with 2021 vaccines reacted pretty
- 15 well with all the 5A1 viruses but did show significant
- 16 reductions in the geometric mean titers against viruses
- 17 that represent those HA group of the 5A2. And then,
- 18 for antiviral analysis very few were available in this
- 19 period, but all of them were analyzed. And none showed
- 20 reduced susceptibility to neuraminidase inhibitors or
- 21 the PA inhibitor, baloxavir.

- 1 Now, I'm going to turn your attention to the
- 2 H3N2 viruses. This is illustrating a number of H3N2
- 3 viruses detected by the GISRS, again, over the past few
- 4 seasons from 2018 to 2021. And as you can see and
- 5 we've discussed, there's not a lot of detection. It's
- 6 good to have this in the information available though,
- 7 so I'm sorry if it's belaboring that point.
- 8 Here's showing the more localized activity
- 9 globally. You can see there was quite a bit of H3N2 in
- 10 Western Africa and parts of Asia and then a little bit
- 11 more modest activity in North America and Europe.
- Now, this is illustrating the phylogeography
- 13 of the H3N2 HA, and I walked you through that last
- 14 tree. So it's the same set up where we have the
- 15 various clades denoted by these bars along this very
- 16 first column, and I've marked the two kind of most
- 17 important clades because this is very busy to
- 18 understand all of these trees, I know. But there's
- 19 this clade here, which is known as the 2a.1b.1b clade.
- 20 And I'll just call those 1b viruses because the name is
- 21 getting very long.

- 1 And then these dark viruses that are named
- 2 here represent reference viruses that we use in the
- 3 human serology assay, and so we had those in the H1
- 4 tree as well. And those will be at the top of the
- 5 columns of the human serology assays. So what we're
- 6 doing for that human serology and for the ferret
- 7 serology, really, is identifying key viruses that
- 8 represent each of these major clades and testing those
- 9 pretty extensively. And that's what we make our
- 10 reference antisera for. It's also what we test the
- 11 human sera with. And then we test, of course, all the
- 12 other viruses that we have available against those
- 13 reference sera from the ferrets, but we can't test so
- 14 many viruses with the human sera. Okay.
- 15 And so, again, we saw towards the end of
- 16 spring last year there were a lot of viruses
- 17 circulating globally. In these columns here you can
- 18 see, and they were in North America, Europe, Africa,
- 19 South America. Okay. And so the vaccine prototype is
- 20 in this group. It's this Hong Kong/70 -- or Hong
- 21 Kong/45. I apologize. Hong Kong/45 and also the egg-

- 1 based vaccine is Hong Kong/2671 shown here.
- The vaccine recommended by the WHO for the
- 3 upcoming season is up in this top group here called the
- 4 2a viruses, so the 2alb.2a viruses rather than a
- 5 2a.1b.1b virus, which is the other group. These are
- 6 represented by viruses like California/55,
- 7 Tasmania/503, and viruses from Cambodia, many in
- 8 Southeast Asia. There was also a split off of this new
- 9 group which really all start at this amino acid set.
- 10 It's probably hard to read here, but I'll define it
- 11 later. And that's a 193 change. And these existed in
- 12 Bangladesh. They have a few more substitutions, and
- 13 they are some of the most recent viruses circulating
- 14 are these viruses here.
- So this is how complicated the H3N2 genetic
- 16 clade distribution of just the hemagglutinin gene was
- 17 from February 2020 to September 2020. You can see all
- 18 the various clades that were cocirculating with
- 19 regional differences. For example, a lot of 3A viruses
- 20 in Europe, many 2alb.2a viruses, these bright green
- 21 ones, in Asia and Southeast Asia, and many of the

- 1 2alb.1b viruses, the dark green ones, also in China and
- 2 other parts of Asia. And in the United States, we had
- 3 kind of a mixed bag. And to remind you, the vaccine
- 4 was in this 2alb.1b group.
- Now, it gets a little simpler with the
- 6 bottleneck of the COVID-19 pandemic and all that was
- 7 discussed earlier really dramatically impacting the
- 8 number of different influenza viruses that we've been
- 9 able to detect and the number of clades that are co-
- 10 circulating. So in some ways, it's one of the easier
- 11 years. Hopefully, we're not missing something. But
- 12 the main viruses are really this 2alb.2a clade and the
- 13 former 2alb.1b clade in the 180 clade in blue.
- Now, when we look at the reactivity against
- 15 the recommended Northern Hemisphere 2020 and '21 as
- 16 well as the Southern Hemisphere 2021 seasons, you can
- 17 see that the reactivity is a bit mixed. And for the
- 18 CDC, for example, we had 63 percent were considered low
- 19 reactors to the Hong Kong/45 cell antigen, which is
- 20 shown on the left in the blue graphs. And overall, the
- 21 total from, for instance, the Francis Crick Institute,

- 1 and VIDRL and the CDC where we had H3N2 viruses to look
- 2 at, 44 percent are considered like the vaccine, and 56
- 3 percent were considered unlike or low to the vaccine is
- 4 a better way to say it, with eight-fold or greater
- 5 reductions. And with the egg vaccine antigen, this
- 6 skews the percentage to the right and makes more of
- 7 them considered eight-fold or low, reduced.
- 8 This is illustrating antigenic cartography
- 9 again. So our Hong Kong/45 cell recommendation in the
- 10 chart on the left is here. It's actually this dot
- 11 here, and the Tasmania cell, for example, that new
- 12 group would be here, as well as these new viruses in
- 13 the HINT assay shown here in the yellow dots. These
- 14 are the ones that have F193S. And on the righthand
- 15 side -- this is again from our colleagues at the
- 16 University of Cambridge using the HI data created at
- 17 these different centers, for example, CDC on the left
- 18 of VIDRL or Melbourne CC on the right. This Cambodia
- 19 egg, which represents one of the new candidates showing
- 20 here up in this region being able to react with many of
- 21 these newer group of viruses.

- Oh, Mike, that's not displaying correctly. I
- 2 guess we'll just move forward. This was actually a
- 3 detailed hemagglutination inhibition assay illustrating
- 4 how the current vaccine reacts against -- oops -- how
- 5 the current vaccine works against the viruses that are
- 6 circulating recently. And it was poorly recognizing
- 7 these viruses that would have been down here and how
- 8 well the new recommendation would work. It's kind of a
- 9 crazy presentation today. Sorry about that.
- 10 Here's the human post-vaccination serum
- 11 analysis. Again, we're looking at geometric mean
- 12 titers now against the Hong Kong/45 cell virus, which
- 13 is the cell recommended candidate. And I won't walk
- 14 you through all the panels because I've done that
- 15 before. But these recent 2A subclade viruses, you can
- 16 see they're the ones that are the lowest in all the
- 17 panels, all the age groups, and have significant
- 18 reductions, thereby illustrating their risk to humans
- 19 with our lack of reactivity and cross-protection
- 20 against those viruses.
- 21 This is illustrating, again, the bubble chart

- 1 showing -- you know, we can focus in on a couple here.
- 2 Like, in the adults it's a little more interesting to
- 3 look at. The pediatric population behaves a little
- 4 more like a naïve ferret because they haven't seen very
- 5 many viruses. So you can see this Hong Kong/45 vaccine
- 6 in the Flucelvax did a good job stimulating immunity
- 7 from 44 to 485 was the titer increase on average. So
- 8 80 percent had a four-fold rising titer or more.
- 9 That's what this up arrow 80 percent means -- and were
- 10 stimulating cross-protection to some extent. See, 126
- 11 against this quite new group that hasn't circulated in
- 12 people before -- and stimulating good reactivity to
- 13 these 3A viruses, which are antiquenically very
- 14 distinct. And that's true for Flublok, and it's also
- 15 true to a certain extent to IIV4, which is an egg-based
- 16 product.
- 17 So to summarize the H3N2 viruses, in most
- 18 countries, areas, and territories reporting influenza A
- 19 viruses, we saw both (H1N1)pdm09 lineage and A(H3N2)
- 20 lineage subtypes. With regard to the phylogenetics of
- 21 the hemagglutinin, the circulating H3N2 viruses from

- 1 this period all belong to the 3C.2alb subclades, and
- 2 I've shared these subclades in bullet points down here.
- 3 There's the 1A viruses. I won't walk you through all
- 4 those amino acid changes -- the 1B, the 2A.
- 5 And this 2A represents where -- so the 1B are
- 6 the viruses where the vaccine that we've had previously
- 7 was in this group, and the 2A is where the new vaccine
- 8 is recommended to be. This is split into two subgroups
- 9 that I pointed out, some more like the Tasmanian and
- 10 Cambodia viruses. They both share this F193S and
- 11 Y195F. Whereas the Tasmania and Cambodia viruses have
- 12 those K171N substitution and those that were in
- 13 Bangladesh and some other regions have the 159
- 14 substitution.
- 15 Importantly, I didn't show you the data, but
- 16 both groups -- both these new groups share some
- 17 substitutions in the neuraminidase gene, the other
- 18 surface glycoprotein of influenza. That's a very
- 19 important antigen, and it's a D463N and an N465S. This
- 20 creates a potential N link-like constellation motif, so
- 21 it adds a sugar moiety to the outside of that

- 1 glycoprotein. And that can really dramatically impact
- 2 antigenicity. Viruses with HA genes belonging to the
- 3 2alb subclade 2B with all these changes or the 3C clade
- 4 were not detected in this period. So we saw some
- 5 reduction in diversity.
- 6 The summary of A(H3N2) viruses continued is
- 7 that the ferret antisera raised against cell culture
- 8 propagated Hong Kong/45 recognized the 3C.2alb.1a
- 9 viruses well. The group within the subclade 2a also
- 10 were recognized but a little bit less well than the la
- 11 group. And the group within the 2a that had these
- 12 substitutions at 159, these are some of these most
- 13 recent viruses found in Bangladesh -- were recognized
- 14 poorly, very poorly by the Hong Kong/45, the current
- 15 vaccine. The ferret antisera against the egg
- 16 propagated recognized all these viruses poorly.
- 17 Now, ferret antisera to cell culture
- 18 propagated A/Cambodia/e0826360/2020 and A/Tasmania/503,
- 19 which are in this 2a group, recognized viruses from the
- 20 la and the 2a subclades well. And for viruses in
- 21 subclade 2a that had these other additional

- 1 substitutions, it recognized those less well, but it
- 2 still recognized those viruses in contrast to the
- 3 current vaccine, which was very poor there. Neither
- 4 group of 2a viruses was recognized well by antisera to
- 5 the A/Cambodia/e0826360 in HI or VN assays, so there
- 6 was some reductions there as we typically find with
- 7 viruses from egg isolates.
- Final bit for the H3N2 is that the human
- 9 serology studies with serum panels from people
- 10 vaccinated with Hong Kong/2671-like or Hong Kong/45-
- 11 like viruses, which are in this 1b group, the post-
- 12 vaccination GMTs were significantly reduced against
- 13 cell culture propagated subclade 1b or 2a viruses but
- 14 not against the 1a or 2b subclades or the 3a subclade.
- 15 That's that cross-protection that I was illustrating
- 16 that's elicited with 3a in particular. When compared
- 17 to titers against egg propagated Hong Kong/2671
- 18 reference viruses, I didn't show you this data, but
- 19 significant GMTs are observed against all the cell
- 20 culture propagated viruses. And this is a typical
- 21 effect, so it's not very useful for looking at what's

- 1 antigenically distinct to humans when we use that
- 2 analysis. For antiviral susceptibility, we really
- 3 didn't see viruses out of 140 that showed any
- 4 reductions to the neuraminidase inhibitors -- so that's
- 5 always good news -- or out of 147 to the baloxavir
- 6 prolinase inhibitor. All right.
- 7 I'm going to turn our attention now to the
- 8 influenza B viruses. So you've gone through the hard
- 9 part. The H3s are always complicated to follow.
- 10 Hopefully, it wasn't too bad. Here's the distribution
- 11 of B virus activity geographically over the globe from
- 12 September 2020 to January 2021. Again, light activity
- 13 for most regions, but we did see some strong B activity
- 14 in parts of Western Africa, for example -- stronger,
- 15 anyway.
- So the influenza B viruses, again, this graph
- 17 looks similar to all of them, which is an unusual year.
- 18 I won't spend too much time on that. Remember, B
- 19 viruses have two lineages called the B/Yamagata and
- 20 B/Victoria lineage, and they are depicted here as to
- 21 their percentage. And it's pretty easy to see in this

- 1 donut shape that 99 percent of the viruses where
- 2 lineage was determined were B/Victoria. We've seen
- 3 very little B/Yamagata.
- And so I'll spend the time on the B/Victoria
- 5 as I mentioned in the outline. Some of my slides
- 6 really aren't showing up well today. If that one --
- 7 that was the phylogenic analysis. This is showing the
- 8 clade distribution, and so basically all the viruses
- 9 circulating are in this one clade, V1A.3, which is
- 10 pretty good news.
- 11 And I'm glad this slide shows up. So this is
- 12 a little smaller view of the phylogenic analysis. The
- 13 one that didn't work is a very large file, so that's
- 14 probably why. But the main thing I wanted to point out
- 15 again is the evolution of the virus in this tree is
- 16 really moving from the bottom to the top for the most
- 17 part. And we had a lot of the viruses in this V1A.3,
- 18 the main V1A.3 clade, which runs from down here to up
- 19 here -- all these viruses circulating -- are really
- 20 B/Washington/2-like. That's the vaccine strain
- 21 recommended for cell and egg.

- So you can see where they all sit. This boxed
- 2 area is this small group of virus that originally
- 3 emerged in 2019 that has this N150K, G184E, and then
- 4 N197D, which results in the loss of a glycosylation
- 5 site. And this is further evolved and split into two
- 6 groups, this 220 kind of group, which really circulated
- 7 in China for the most part, and another group with
- 8 P144L, which was more limited but had more geographic
- 9 distribution.
- 10 And this is showing the reactivity of ferret
- 11 antisera recommended for the vaccines this last season,
- 12 so B/Washington cell like and egg-like. Again, the
- 13 patterns for the totals are pretty similar, and the top
- 14 part is showing February 2020 to January 2021. We had
- 15 a lot more viruses to analyze.
- And then the bottom part is showing just this
- 17 most recent period from 2020 to 2021. So you can see
- 18 about 70 percent of the viruses were well recognized in
- 19 the early part of the year, and where they were low was
- 20 primarily CNIC or China, the China National Influenza
- 21 Center, showing the biggest reduction there. And then

- 1 where the viruses were seen in this period were
- 2 primarily in China, and so they were pretty much the
- 3 similar viruses. And a lot of those are considered low
- 4 to this Washington/2 candidate in their hands. We see
- 5 a pretty similar pattern, which is always good news,
- 6 with the egg antigen.
- 7 Again, I'll show you some cartograph. You
- 8 guys are probably all experts at this by now, but you
- 9 can see the gray dots are where viruses existed that
- 10 are older than 12 months. And here, we're looking at
- 11 data from our collaborating center in Atlanta where the
- 12 more recent viruses -- we did have a few that were
- 13 double deletion or could be characterized in the last
- 14 12 months but not in the most recent period. Here's
- 15 where the Washington/2 cell virus sits and all the
- 16 viruses really circulating recently around that. The
- 17 very old virus is Brisbane/60. That was two vaccines
- 18 ago, and this Colorado was the last vaccine prior to
- 19 the Washington.
- Now, on the righthand side I've broken out
- 21 this small 150K group in these colors of green so that

- 1 you can see them more easily. Again, here's where our
- 2 B/Washington egg sits, and these start to get outside
- 3 the sphere of antisera recognition. So this is
- 4 starting to become an antigenically distinct group.
- 5 And then you can see how well this B/Washington cell
- 6 sits right in the middle of most of the viruses that
- 7 were tested, and that's what we want to see.
- 8 This is a different way of looking at
- 9 cartography. Here, we're doing cartography of the sera
- 10 and not of the virus. And so you haven't seen this
- 11 before, but I thought it would be helpful. What you do
- 12 is the sera is dead set in the middle of this
- 13 particular one on the left-hand side using sera against
- 14 B/Victoria/705. This is a B/Washington/2-like virus.
- 15 And you can see the sera's reactivity profile
- 16 determined as to how well it would cover within four-
- 17 fold of the homogenous titer, so we consider that good
- 18 coverage when we see something like that. And so some
- 19 of these 150K viruses, while they are showing antigenic
- 20 distinction, do show some cross protection with this
- 21 sera.

- 1 Now, if we make sera to 150K virus, it
- 2 actually sits up in this corner. I can't really show
- 3 it, but it's right about there. It will cover these
- 4 viruses pretty well, these 150K viruses, but it won't
- 5 cover all the other viruses that are circulating.
- 6 So this is another way to do the analysis is
- 7 to take the sera and ask the question "What will it
- 8 cross-neutralize?" So it's not just about getting the
- 9 best match. It's about getting sera that does
- 10 neutralize the viruses that are all co-circulating at
- 11 the same time or predicted to co-circulate in the
- 12 future well.
- And another piece of the puzzle is always the
- 14 human serology. How well does the vaccine induce
- 15 antisera that protects against the new emerging clades?
- 16 And so it's the same serum panel we've described on
- 17 this side, and now we're doing geometric mean titers
- 18 against B/Washington/2 cell, which is in this V1A.3
- 19 group. And then we always, as I pointed out before,
- 20 select viruses that are different. So these are the
- 21 viruses that are the same in the first two columns, but

- 1 then this one, Maryland/24, has an additional
- 2 substitution that could impact antigenicity. This is
- 3 the group that had the 150K change that I just pointed
- 4 out with the ferret antisera showed some differences
- 5 but also showed cross-reactivity with the Washington/2
- 6 cell antisera.
- 7 This is another subclade that we have our eye
- 8 on from Lebanon, the 2016 viruses. And it has an
- 9 important constellation change at 233 and yet another
- 10 one from Florida and then an older virus clad, the
- 11 V1A.1 -- this is Iowa/6. This is a double deletion
- 12 virus that was a previous vaccine candidate.
- 13 And I walked through all that sera to
- 14 illustrate we're testing a lot of different things.
- 15 What you can see is a lot of green, and that is good.
- 16 Green is good. And that's true even for this virus
- 17 group that's considered a bit antigenically distinct
- 18 and was expanding in China.
- 19 And I won't belabor the bubble plot, but you
- 20 can see the same thing here. Looking, for example, in
- 21 the pediatric three- to eight-year-olds you can compare

- 1 Flucelvax and the egg vaccinated individuals. Pretty
- 2 similar responses against the Washington/2 egg or the
- 3 Washington/2 cell, which you can see there. For
- 4 example, here good increases, and sometimes you get
- 5 better increases in titer with the egg antigens.
- And then you can also see here that there's a
- 7 lot of protection induced against these viruses. This
- 8 is in the Rhode Island column here with the 150K group
- 9 by this vaccine, even in this younger population. So
- 10 that's important.
- 11 So to summarize the B/Victoria viruses,
- 12 they've greatly predominated over the Yamagata lineage.
- 13 The majority of the viruses from this time period were
- 14 identified in China, so that's from September to
- 15 January. The HA phylogenetics -- all the HA genes
- 16 belong to this major subclade, V1A.3. These have
- 17 deletions for the residues 162 to 164, which was their
- 18 major antigenic change and why they expanded so rapidly
- 19 in the past. So they were antigenically distinct group
- 20 of virus. Many of these also share this G133R
- 21 substitution.

- 1 So a smaller subclade in this group was this
- 2 1A.3 viruses that have the 150K substitution along with
- 3 these other changes. Now, that group was very small
- 4 last year and did start to expand. And that's what we
- 5 saw in China, primarily viruses like that. And this is
- 6 already separating into two other subgroups, one of
- 7 those that on the phylogenetic tree have this V220M and
- 8 P241Q, which was in China and West Africa. And another
- 9 subgroup has the A127T, P144L, and K203R. They were
- 10 found in Europe, West Africa, and Oman.
- 11 For their antigenic characteristics, most of
- 12 the viruses tested since February 2020 were recognized
- 13 well by ferret antisera raised against the cell
- 14 propagated or the egg propagated B/Washington/2/2019
- 15 virus. For the 1A.3-150K subgroup that predominated
- 16 since September, they did show reduced inhibition by
- 17 ferret antisera raised against the B/Washington
- 18 viruses. However, ferret antisera raised against this
- 19 group of virus, while it well inhibited themselves --
- 20 you know, it well inhibited homologous viruses with the
- 21 150K, they poorly inhibited most of the other viruses

- 1 with 1A.3 HA genes.
- 2 For post vaccination human sera, generally
- 3 well inhibited all the viruses, including the 150K
- 4 subgroup, and antiviral susceptibility, again, really
- 5 in good shape. 144 viruses were analyzed. All were
- 6 susceptible to oseltamivir. One showed some reduction
- 7 to the zanamivir. And with the 16 viruses that were
- 8 tested for laninamivir and peramivir, all were
- 9 permissive or susceptible. And then, there were no
- 10 viruses analyzed that showed reduced susceptibility to
- 11 the baloxavir either, which is the polymerase
- 12 inhibitor.
- So I'll turn your attention to B/Yamagata, and
- 14 as I promised, we should have some time for questions
- 15 and answers. This will be pretty brief. Again, that
- 16 tree's not showing up, but this is a large phylogenetic
- 17 tree showing all these viruses circulating are very
- 18 similar to each other. In this period, we didn't have
- 19 any Yamagata viruses with collection dates after August
- 20 2020. We at CDC were able to get some Yamagata viruses
- 21 over December from international sources, as well as

- 1 late in our season last year, but not in this period.
- 2 A few viruses with collection dates in earlier 2020
- 3 were available, and that's what I just mentioned.
- 4 This is showing you antigenic cartography.
- 5 Again, old viruses are in gray. The most recent that
- 6 we could test are in red, and they're still showing
- 7 nice proximity to the B/Phuket cell and egg antigens.
- 8 And so to summarize those, the Yamagata
- 9 lineage were rarely detected. We had no viruses
- 10 available with collection dates after August. All the
- 11 viruses from 2020 had HA genes in clade 3, which is
- 12 where B/Phuket/3073 is, so it shares that with the
- 13 vaccine virus. Most recent viruses were well
- 14 recognized by ferret antisera cell culture propagated
- 15 and egg propagated B/Phuket/3073, and post-vaccination
- 16 human sera well recognized viruses representative of
- 17 those most recently circulating. And I didn't show you
- 18 that because it's a bit boring.
- 19 So we really have to acknowledge everybody
- 20 this year, more so than ever. I mean, we always put
- 21 these slides up, but our WHO collaborating centers and

- 1 colleagues in all those collaborating centers really
- 2 did a bang-up job. The Geneva staff, the central
- 3 regulatory labs, and really who we're wanting to thank
- 4 most are the U.S. and international partners, so the
- 5 GISRS. They really beat the bushes to get viruses, and
- 6 so I think this may address some of the questions we
- 7 had earlier on are they just not being noticed or
- 8 detected.
- 9 Well, people really looked. The CDC developed
- 10 a multiplex real-time PCR assay that detects both SARS-
- 11 coronavirus and influenza A or influenza B, as well as
- 12 a housekeeping gene in the single assay. And we
- 13 distributed that. After it was distributed to all our
- 14 national public health laboratories here, once we had
- 15 enough kits around, we distributed that to the National
- 16 Influenza Centers globally. So they could
- 17 simultaneously check subsets of their viruses for both
- 18 influenza and SARS. For example, if it was SARS
- 19 negative and they were using a SARS only test, they
- 20 could repeat it with that, or they could just use that
- 21 flu multiplex to start with. And that was done at all

- 1 the state public health laboratories in the U.S. as
- 2 well.
- And so fitness forecasting, we had a number of
- 4 partners there. I didn't show you much of their data
- 5 this year. It's harder for them to fitness forecast
- 6 when there's not that much virus. And a special thanks
- 7 to Becky Kondor, Min Levine, Larisa Gubareva, and John
- 8 Steel who all contributed significantly to everything I
- 9 showed you. These are team leads in my branch. Becky
- 10 is also the deputy director of the WHO collaborating
- 11 center and does a large part to put all our data
- 12 packages together. And with that, I will just leave
- 13 you with some information showing. Thank you.
- DR. HANA EL SAHLY: Thank you, Dr. Wentworth,
- 15 for summarizing a very complicated dataset in very
- 16 clear terms. I will invite now my members -- my
- 17 colleagues to raise the hand function if you have
- 18 questions to Dr. Wentworth. I will begin by asking
- 19 about the H1N1. We are moving from the 5A1 to the 5A2
- 20 in terms of recommendation for inclusion. Maybe I did
- 21 not quite grasp it, but is there a preponderance that

- 1 we observed the epidemiology in A2 versus A1? And is
- 2 the geographic distribution sort of spreading? Because
- 3 maybe I'm misreading, but it seems like this year
- 4 compared to many other years there was more
- 5 compartmentalization of where the viruses occurred.
- 6 The color figures used to blend a little more.
- 7 DR. DAVID WENTWORTH: Yeah. Well, I think you
- 8 picked up on all of that very well, so I don't think
- 9 you misinterpreted anything. And it's a very -- it's
- 10 one of those difficult situations. So I think our
- 11 discussions earlier about reduced travel, we really did
- 12 see more compartmentalization of different clades of
- 13 flu virus and even of the evolution -- you know,
- 14 branching evolution from what used to be one virus --
- 15 like I showed you Bangladesh was doing one thing,
- 16 Cambodia doing another in the H3s. And so that makes
- 17 it challenging.
- 18 For the H1N1s, we really saw a paucity of
- 19 those viruses all around the globe. There just wasn't
- 20 a lot. And so to say that the clade -- the earlier
- 21 clade, the Al versus the A2 -- so the Al's the 187

- 1 group and the A2's the 156 group. Those two clades
- 2 were not equal. There was probably about 70 percent of
- 3 the older virus and only 30 percent of the one that's
- 4 being recommended.
- 5 However, if you remember from the Southern
- 6 Hemisphere, what we saw was the emergence of that clade
- 7 and the rapid displacement of that clade -- of other
- 8 clades by that virus in the one season so that at least
- 9 50 percent of the viruses that circulated in the United
- 10 States the year before. And that partly drove the
- 11 change for the recommendation for the Southern
- 12 Hemisphere 2021.
- 13 The other things that drove that change and
- 14 drive the recommendation here are human serology, which
- 15 shows really great risk from that antigenic group and
- 16 very little risk from the Al, which everyone's been
- 17 vaccinated with in the United States, for example,
- 18 about 180 million people, and have had prior infection
- 19 or exposures to. So we saw that great kind of
- 20 reduction in geometric mean titers when you look at
- 21 those A2 156K viruses, so that's important.

- 1 And the thing I didn't show you but we did
- 2 have in the Southern Hemisphere was we actually were
- 3 able to see in the United States and in, I think,
- 4 Canada they saw this as well in two different
- 5 epidemiologic studies clade specific vaccine
- 6 effectiveness reductions for the 156K group viruses.
- 7 So I know probably -- I'm glad you asked the question.
- 8 I was thinking of trying to put that in, but it's very
- 9 old data. And it's published, but that also -- it's
- 10 one of the times where we had enough viruses from both
- 11 clades cocirculating in a season to do that effectively
- 12 with good statistical relevance. So it's the human
- 13 serology and the clade specific VE that really says the
- 14 156K group has a great risk. You can never predict
- 15 what flu will do, but we do understand that one has a
- 16 greater risk than the 187A group of viruses.
- 17 DR. HANA EL SAHLY: Thank you. Dr. Paul
- 18 Spearman, please put your camera on and ask your
- 19 question. The mic.
- 20 DR. PAUL SPEARMAN: Thank you very much.
- 21 Again, that's tremendous amount of data. I also had a

- 1 question related to Hana's about the choice in H1N1.
- 2 So when you have two different clades and one it sounds
- 3 like is more emerging -- and that's what we've chosen.
- 4 But it sounds also like sera raised against that clade
- 5 5A2 doesn't really cross protect against the 5A1. So
- 6 there's kind of a danger there and is it just -- in
- 7 some of your other clade selections for the other
- 8 strains, it seemed like you could find one that really
- 9 could cross protect against multiple clades. And is
- 10 that not possible with H1N1 where, you know, there's
- 11 certainly going to be naïve kids that aren't going to
- 12 have seen the prior vaccines will be very susceptible?
- 13 But maybe it won't circulate. Is that part of the
- 14 thinking because of all the protection in the
- 15 community?
- 16 DR. DAVID WENTWORTH: Yeah. So fantastic
- 17 question. So I'll try to -- I take it I probably
- 18 wasn't as clear as I could be. So when we take ferret
- 19 antisera, ferret antisera is very focused immune
- 20 response. It has very immunodominant focused immune
- 21 response. And with H1N1 viruses in particular, it can

- 1 be very focused on this SA site where the 156K
- 2 substitution is. So it's very easy to show that
- 3 they're antigenically distinct from each other, the 187
- 4 virus -- so the 5A1 and the 5A2. They're antigenically
- 5 very different from each other.
- But remember, that's in a naïve animal. And
- 7 in a human, we get broader response even in a naïve
- 8 person usually, so you get some more cross protection.
- 9 The thing is both of these -- the main difference
- 10 between both of those viruses is at this 187 position
- 11 versus the 156 position. But they share many other
- 12 changes along the way; right? So they share all the 5A
- 13 changes, which are basically almost all the viruses --
- 14 which is all the viruses circulating. Right?
- So there's a certain level of comfort, and
- 16 even if it's an antigenically advanced virus and it
- 17 isn't the one that predominates that you are going to
- 18 induce immunity. And it does show some cross
- 19 protection. I tried to show you that with some of the
- 20 bubble plots. Obviously, we can't show that in humans
- 21 until people have been vaccinated with it.

- 1 The only thing I can mention that's kind of
- 2 related to that, you may remember that we had the
- 3 delayed decision for the H3 viruses. We chose that
- 4 Kansas/14 because it was kind of like this 156K group.
- 5 It came up late in the season. It came up very
- 6 rapidly. We didn't have a vaccine candidate for it
- 7 yet. We had some in the works, and we didn't have
- 8 enough data to say if it's going to continue to expand
- 9 and whether or not the antigens would produce a good
- 10 immune response.
- 11 We also see very distinguished in ferrets
- 12 antigenic profiles between those two. But when we take
- 13 the serum from people vaccinated with Kansas, it
- 14 induced great cross protection against these other
- 15 clades in all the groups with the exception of those
- 16 young pediatrics, the six month to 35-month-old.
- 17 That's where you see the biggest, you know, lack of
- 18 prior immune response that would be induced as a memory
- 19 response.
- 20 And so that's what I can tell you about that.
- 21 So I think it's really what I was telling you about the

- 1 risks of that 156K virus group being greater than the
- 2 risk to the other group, which has basically circulated
- 3 for a while in all of us and has been in our vaccines.
- 4 DR. PAUL SPEARMAN: Great. Thanks. It sounds
- 5 like, if we're not a ferret, we'll still get some cross
- 6 protection.
- 7 DR. DAVID WENTWORTH: We're also one (audio
- 8 skip), you know.
- 9 DR. HANA EL SAHLY: Dr. Michael Kurilla.
- 10 DR. MICHAEL KURILLA: Thank you. David, I had
- 11 two specific questions. One is when you look at human
- 12 antisera, it looks like you're largely taking that from
- 13 individuals who were vaccinated in the previous year,
- 14 and I'm wondering if you've ever looked at individuals
- 15 who had a natural flu infection the previous year to
- 16 compare that to what the vaccinated ones looked like
- 17 and if there's any sort of qualitative difference. The
- 18 second question is you present a very detailed,
- 19 deliberate analysis. I'm wondering is there any type
- 20 of hypothesis testing to actually determine whether in
- 21 fact the analysis you're doing is actually improving

- 1 over time in terms of the effectiveness of the
- 2 vaccines?
- 3 Are you getting it right more often and
- 4 leading to a reduction in mortality and morbidity from
- 5 flu? I recognize there's a lot of moving parts here,
- 6 but I'm just wondering are we getting better at what
- 7 we're doing? Or are we just doing the same thing every
- 8 year because we think it's as good as we can get?
- 9 DR. DAVID WENTWORTH: Yeah. Thank you for
- 10 those questions. The second one's very hard to answer.
- 11 We haven't done like a hypothesis type of analysis to
- 12 illustrate whether or not some of the new -- we really
- 13 haven't changed so much as added more. We tend to add
- 14 more as to whether or not the new things we're doing
- 15 improved. And I think we need longer term analysis to
- 16 understand that. Like the fitness forecasting plays a
- 17 role in trying to understand, you know, better what
- 18 viruses will circulate in the future, and that's aided
- 19 by a lot more next generation sequencing around the
- 20 world that gives you more data.
- 21 So the short answer is I think we're getting

- 1 better, but we haven't done an analysis for that. And
- 2 I think that's something we can look into more. And I
- 3 also think, no matter what, we can have a poor VE, and
- 4 it may not be totally related to the vaccine selection.
- 5 Again, you can look at these slides later, but
- 6 what you can see is sometimes people don't respond as
- 7 well to the vaccine. And we don't understand why that
- 8 is. Like, why doesn't person A respond as strongly as
- 9 person B to the same vaccine? That may get to the
- 10 first part of your question, which was have they all
- 11 been vaccinated previously, or have they been naturally
- 12 infected previously?
- 13 And unfortunately, we have very limited data
- 14 as to what's happened with these folks before. We ask
- 15 for people that haven't been vaccinated previously for
- 16 the most part because we want to get a more naïve
- 17 response, but it's in part how people fill out a form
- 18 and survey prior to being -- entering the study and
- 19 having their blood drawn. We can see sometimes in the
- 20 pre -- if you look at their pre-sera, this has to be a
- 21 very detailed analysis when you do this. But if you

- 1 look at their pre-sera, you can sometimes see that they
- 2 have a high titer to the vaccine antigen and maybe a
- 3 lower titer to something that was circulating around
- 4 the same time that was similar.
- 5 But that becomes very hard to tease out. It
- 6 could just be that they were infected by something very
- 7 much like the vaccine. So I can -- because that was --
- 8 I don't know if that addressed your question or not. I
- 9 can open for follow up if you want.
- 10 DR. HANA EL SAHLY: Thank you. Dr. Portnoy.
- 11 DR. JAY PORTNOY: Great. Thank you and thank
- 12 you for that detailed overview. I'm putting on my
- 13 allergist hat now because I take care of patients who
- 14 have egg allergy, and I wanted to know why are some of
- 15 these vaccines egg-based and others recombinant. What
- 16 determines which lineages are recombinant and which are
- 17 egg-based, and is one type more effective than the
- 18 other? And does there really have to be one of each
- 19 type?
- DR. DAVID WENTWORTH: Wow. Great questions.
- 21 So the first flu vaccines were all egg-based, so we

- 1 didn't have recombinant and cell-based vaccines in the
- 2 beginning. They were all egg-based, and this is in
- 3 part because it was -- one of the reasons the influenza
- 4 virus was able to be isolated was because it grew in
- 5 eggs before we even had tissue culture capabilities in
- 6 the laboratories. So in the 1930s, they could isolate
- 7 influenza using embryonated hens' eggs.
- 8 And in the past, the isolation in eggs was
- 9 very easy. The virus didn't change very much, and it
- 10 grew very well in egg. And that's continued for the
- 11 most part with many of the viruses. The exception is
- 12 the H3 viruses, which have become so adapted to humans
- 13 since their introduction in 1968.
- So originally, they were from avian, so the HA
- 15 was from an avian source. It jumped into humans,
- 16 caused the pandemic in 1968, and then ever since then
- 17 it's been evolving more and more to the human receptors
- 18 and binding more poorly to the avian receptors. And so
- 19 the H1N1 virus is a relatively recent virus from pigs,
- 20 which share a lot of the same type of receptors as
- 21 avian. So it doesn't have to undergo as many changes,

- 1 so that's kind of a long virological story about what
- 2 happens with the virus when we put it in eggs. Some
- 3 have to change a lot, and some don't have to change as
- 4 much in order to replicate efficiently.
- 5 Eggs also are globally the most important
- 6 vaccine substrate in the world because that's what most
- 7 people can produce at high quantities to get to a half
- 8 a billion doses of vaccine. In the U.S., we have
- 9 started developing newer technologies, like the cell-
- 10 based recombinant cell-based vaccines, which are --
- 11 certain companies can do. And they have license
- 12 through the FDA, and they produce a subset of the
- 13 vaccines used for the United States. But I don't have
- 14 the numbers in front of me, but I would say about 150
- 15 million doses are produced in eggs. And then the rest
- 16 of that 40 million comes from cell-based candidates and
- 17 recombinant candidates.
- 18 Recombinant is also a pretty new technology
- 19 for flu vaccines, and it's being used more and more.
- 20 And so we're trying to accumulate that data to
- 21 understand is one better than the other and why. And

- 1 it might seem on the surface when you look at the
- 2 ferret sera that it would be obvious, but I think when
- 3 Dr. Weir or other colleagues at the FDA can look at
- 4 this in a different way, they're looking at how well it
- 5 induces a strong response and how that cross protects
- 6 against many viruses and what the VE is. So I think --
- 7 when I say VE, I mean vaccine effectiveness studies.
- 8 So I think down the road there'll be enough
- 9 people vaccinated with the different platforms that you
- 10 can do platform specific vaccine effectiveness studies.
- 11 And that looks at the whole population, all of us with
- 12 all our different genetics, the different viruses. So
- 13 it takes into account so many things.
- DR. JAY PORTNOY: So should we expect to see
- 15 more recombinant viruses over time?
- 16 DR. DAVID WENTWORTH: Yeah. It's really -- I
- 17 think the market will drive that, right? So I think
- 18 the recombinant cell-based are new technologies that to
- 19 me represent a good advance in flu vaccine technology.
- 20 DR. JAY PORTNOY: Thank you.
- 21 DR. HANA EL SAHLY: Dr. Hayley Gans.

- 1 DR. HAYLEY GANS: Thank you very much. That
- 2 was really great, and obviously this is the really
- 3 important data that is the basis for our decision
- 4 today. So really understanding this is really helpful,
- 5 so thank you for your explanation.
- 6 My question was related to a previous question
- 7 in that trying to understand how sort of good we are at
- 8 predicting and how we are using the data that we want.
- 9 Moving towards not having to analyze the difference in
- 10 these viruses as you've very beautifully outlined, how
- 11 do you -- and there's a lot of work now going towards
- 12 having a universal vaccine, really trying to figure out
- 13 what part of the virus is actually universal so that we
- 14 could potentially have immune response to it and not
- 15 have to do this every year. When you do your antigenic
- 16 sort of analysis, are you also looking at areas that
- 17 actually may be overlapped so that this kind of
- 18 information could be used as we move forward instead of
- 19 looking at really how they differ?
- DR. DAVID WENTWORTH: Yeah. That's a really
- 21 interesting point, and of course there's a lot of work

- 1 funded by our federal government towards universal flu
- 2 vaccine in the hopes that we could get a shot once
- 3 every five years, once every 20 years, those kinds of
- 4 things. We don't focus on those epitopes that would be
- 5 more universal flu vaccine epitopes, and I'll explain
- 6 why. Because those epitopes don't change. They don't
- 7 really help us with the current flu vaccine.
- 8 Basically, we get a similar answer across those
- 9 epitopes from the different antigens because those are
- 10 shared across all those antigens.
- 11 Many of the changes that I -- so, for example,
- 12 we'll take a certain type of universal flu vaccine
- 13 would be one that's focused on the stem of the
- 14 hemagglutinin rather than the head of the
- 15 hemagglutinin. Where influenza mutates is really
- 16 primarily in the head of the hemagglutinin, and those
- 17 are the ones that evade neutralizing antibodies. Some
- 18 antibodies that react with other parts of the
- 19 hemagglutinin are not neutralizing, so they become very
- 20 difficult to measure, for example. You have to have
- 21 different types of tests set up to understand how well

- 1 you're inducing the, quote/unquote, universal epitopes.
- 2 And we have -- for the humans, we have quite -
- 3 for human sera, that would be extremely challenging.
- 4 For ferrets, you could do it. You have to have -- how
- 5 it's done is you make chimeric hemagglutinin molecules
- 6 that, say, for example, have a different head
- 7 completely that can't be recognized from an H5 virus
- 8 that circulates in chickens or whatever or an H6 virus
- 9 that circulates in chickens. And then you put the stem
- 10 of an H1 virus, so you have to make these by reverse
- 11 genetics and recombinant virus technologies. And then
- 12 you can use that virus to see how well it's neutralized
- 13 by the various sera.
- 14 And what I'm saying is if I were to do that
- 15 with a ferret sera that we create, they would all be
- 16 about equally neutralized because nothing changed on
- 17 that part where the antibodies are going against. It's
- 18 quite a different thing. I think part of universal is
- 19 stimulating high levels of antibodies to those
- 20 conserved epitopes rather than low levels and have then
- 21 be high affinity rather than low affinity. So we're so

- 1 busy doing the kind of analysis to make the flu vaccine
- 2 recommendations that that universal vaccine's bases
- 3 really in extramural programs from NIH and
- 4 investigators around the world doing more pre-clinical
- 5 work.
- 6 DR. HAYLEY GANS: Thank you so much. I look
- 7 forward to the day that we can get our vaccine every
- 8 five years.
- 9 DR. HANA EL SAHLY: I will stay on the
- 10 question of H5. You mentioned it with regards to the
- 11 universal flu, but is the H5N8 still localized at the
- 12 outbreak level in Russia? Do we need to worry there?
- 13 DR. DAVID WENTWORTH: That's not a typical
- 14 VRBPAC question. So yeah, there has been a small
- 15 outbreak of H5N8 viruses that has been zoonotically
- 16 transmitted to humans in Russia, and we're working to
- 17 understand better about that virus. I think there was
- 18 about eight infections. We're still trying to narrow
- 19 down data or our colleagues at Vektor in Russia who are
- 20 part of the vaccine consultation meeting and have
- 21 provided some data and are following up on and trying

- 1 to get serum to understand if people were really
- 2 infected or if they just test positive because they
- 3 were around poultry that had very high levels of those
- 4 virus. And you can swab them, and they were positive.
- 5 So there's a lot of things to still be worked
- 6 out. Usually during the vaccine recommendation meeting
- 7 when we have it in person in Geneva, we cover the
- 8 zoonotic viruses at the same time. However, the
- 9 zoonotic virus for selecting vaccines for pandemic
- 10 preparedness is what we do there. And I never present
- 11 that at VRBPAC, but what's done in that setting is to
- 12 go through the very giant iceberg of viruses that are
- 13 circulating in the animal reservoir trying to
- 14 understand which ones have been zoonotic, which ones
- 15 have zoonotic potential, which ones have pandemic
- 16 potential.
- 17 And then every six months new pre-pandemic
- 18 candidate vaccine viruses are selected from these
- 19 groups for production in good laboratory practice to
- 20 create seed stocks so that it can then be used in the
- 21 event of a pandemic, and they're available to all the

- 1 manufacturers. So manufacturers can acquire those seed
- 2 stocks and just make technical lots and see how they
- 3 grow and do -- there's also clinical studies done from
- 4 them. And so that's kind of a long-winded answer to
- 5 the Russian question, but it turns out we already had
- 6 selected a vaccine virus for this group last VCM, so in
- 7 September. And that one is in production or nearly
- 8 completed. The CNIC, the Chinese National Influenza
- 9 Center, collaborators -- WHO collaboration are at
- 10 Chinese National Influenza Center developed that
- 11 resource.
- So it does exist. So it's in a high growth
- 13 background, and it does exist. And they'll be testing
- 14 sera against that virus to see how well it cross reacts
- 15 against these H5N8s from a pandemic preparedness
- 16 perspective.
- 17 I mean, we have seen H5N8 jump into -- H5
- 18 viruses of many N subtypes, primarily H5N1,
- 19 zoonotically transmitted to people many times in the
- 20 past, and most of the time these are very localized
- 21 outbreaks without evidence of person-to-person

- 1 transmission. And so we are definitely watching this
- 2 situation as we do every zoonotic event, and the first
- 3 thing that happens is we try to look for if it's
- 4 acquired the ability to transmit among humans. And we
- 5 also simultaneously look to see if we already have a
- 6 vaccine candidate that's made. And if we don't, we
- 7 start making one.
- 8 DR. HANA EL SAHLY: All right. Well, thank
- 9 you so much for this presentation and for taking all
- 10 these questions. At the moment, we will have a ten-
- 11 minute break in our agenda, and it's 10:20 my time or
- 12 11:20 Eastern Time. We will reconvene at 11:30.

13

14 [BREAK]

15

- 16 MR. MICHAEL KAWCYNSKI: Hi. And welcome back
- 17 to our 165th VRBPAC Meeting. We now are coming back
- 18 from break, and we are entering into our middle portion
- 19 of the agenda. I'd like to hand it back Dr. El Sahly.
- 20 Dr. El Sahly, take us away.

21

1 DOD VACCINE EFFECTIVENESS REPORT

2

- 3 DR. HANA EL SAHLY: Thank you. It's my
- 4 pleasure now to introduce Dr. Kevin Taylor, the Global
- 5 Emerging Infections Surveillance Branch, Armed Forces
- 6 Health Surveillance Division, Public Health Division,
- 7 and Dr. Kathleen Creppage also from the Armed Forces
- 8 Health Surveillance Division. They will give us an
- 9 overview of the Department of Defense vaccine
- 10 effectiveness report. Dr. Taylor.
- 11 LTC KEVIN TAYLOR: Hi, good morning. As was
- 12 already said, my name is Lieutenant Colonel Kevin
- 13 Taylor. I'm with --
- 14 MR. MICHAEL KAWCYNSKI: Dr. Taylor, you had
- 15 your camera on. Can you turn it back on again?
- 16 LTC KEVIN TAYLOR: I think I lost connection
- 17 altogether. I got to request re-entry into the --
- 18 MR. MICHAEL KAWCYNSKI: That's okay. Here you
- 19 go. We got you.
- 20 LTC KEVIN TAYLOR: Okay.
- 21 MR. MICHAEL KAWCYNSKI: Just give us a second

- 1 and we'll make you back to a presenter. You should be
- 2 able to go ahead and turn your camera on again. And
- 3 trying to find you on the list. Where'd you go? Let's
- 4 move him up to a presenter.
- 5 MS. KATHLEEN HAYES: He's under presenter
- 6 already, so he's okay.
- 7 MR. MICHAEL KAWCYNSKI: Okay. There you go.
- 8 Are you able to move your slides, Dr. Taylor?
- 9 LTC KEVIN TAYLOR: Yep.
- 10 MR. MICHAEL KAWCYNSKI: There you go.
- 11 Perfect. Take it away.
- 12 LTC KEVIN TAYLOR: All right. Thanks again,
- 13 yes. I'm Lieutenant Colonel Kevin Taylor. I'm with
- 14 the Defense Health Agency's Armed Forces Health
- 15 Surveillance Division. And I'll be presenting the
- 16 results from the DoD Global Respiratory Pathogen
- 17 Surveillance Program and those partners that contribute
- 18 to this very important effort each year. We don't have
- 19 a whole lot of data to present on today, but hopefully
- 20 it'll be a little bit of a useful add-on to the great
- 21 presentations you already heard this morning.

- 1 I'm also filling in for the very capable
- 2 Commander Mark Sheckelhoff who led this effort within
- 3 our division over the past few years but who departed
- 4 recently for his next public health service officer
- 5 assignment. I'm also joined by Dr. Kathleen Creppage
- 6 who is the portfolio manager for the respiratory
- 7 infections focus area here within our office and who is
- 8 truly instrumental in pulling together much of what
- 9 we'll be presenting here today.
- 10 So today I'll be presenting data on the 2020
- 11 to '21 influenza season from our influenza surveillance
- 12 network, including an overview of the past three years
- of surveillance data with a snapshot of what's taken
- 14 place, of course, during the past few months during the
- 15 pandemic. Included here will be surveillance data from
- 16 our partners in North America, South America, Europe,
- 17 and Middle East, Africa, and Asia. So I know it was
- 18 mentioned on the agenda that I'll be doing a talk on
- 19 vaccine effectiveness, but we're actually going to be
- 20 covering just a general surveillance for flu as well.
- 21 As with the other contributors, our analyses

- 1 this year are going to be very limited in comparison to
- 2 previous years due to the low number of influenza cases
- 3 captured through our surveillance program over the past
- 4 several months. And with that said, I'll be presenting
- 5 a brief summary, still, of the phylogenetic analyses
- 6 developed by the U.S. Air Force School of Aerospace
- 7 Medicine or what I'll refer to as USAFSAM. And this
- 8 may, of course, look different compared to previous
- 9 years. For this season, we only had 12 influenza
- 10 samples received by USAFSAM for sequencing, so
- 11 obviously a much more scaled down analysis.
- 12 In addition, I'll be presenting a mid-year
- 13 estimate of vaccine effectiveness developed by the
- 14 Armed Forces Health Surveillance Division at the
- 15 Analysis Branch. We won't be sharing data on antigenic
- 16 characterization for this season like we have in the
- 17 past. That data is usually provided by the Naval
- 18 Medical Research Center, and that's just because of
- 19 insufficient data this time around.
- 20 All right. So I'll start off today with a
- 21 brief overview of the influenza surveillance within

- 1 DoD. Flu surveillance is included as part of the DoD
- 2 Global Respiratory Pathogen Surveillance Program that I
- 3 mentioned before, which is managed out of the Global
- 4 Emerging Infections Surveillance Branch here at AFHSD.
- 5 The GEIS Branch is a DoD asset dedicated to the
- 6 surveillance of infectious diseases primarily but not
- 7 exclusively in the military community.
- 8 Our flu surveillance program extends over 400
- 9 locations in over 30 countries, utilizing the network
- 10 of DoD laboratories that are across the globe. In
- 11 addition to monitoring U.S. military personnel, our
- 12 partners have relationships with foreign governments
- 13 including ministries of health and ministries of
- 14 defense and academic institutions which provide disease
- 15 surveillance on local, national populations as well.
- 16 Our laboratories have pretty extensive characterization
- 17 and capabilities including cell culture, PCR, and
- 18 sequencing capabilities. On average we have about
- 19 30,000 or more respiratory samples collected a year and
- 20 analyzed within our surveillance network. We also have
- 21 access to extensive health records for the active-duty

- 1 military population, which are typically an important
- 2 source of data for monitoring influenza activity within
- 3 the DoD and conducting vaccine safety and effectiveness
- 4 studies.
- 5 I'd like to briefly show where our GEIS-
- 6 Supported Influenza Surveillance is active. The GEIS
- 7 network is spread across six of what we call geographic
- 8 event commands shown here. And multiple laboratories
- 9 conduct flu surveillance routinely as a part of this
- 10 program. One of the core GEIS laboratories, USAFSAM,
- 11 which I mentioned before, has a particularly wide
- 12 geographic footprint and surveils for flu across many
- 13 sentinel sites in the U.S., in Europe, and also
- 14 locations in the Indo Pacific region. However, testing
- 15 for flu obviously declined significantly in 2020 and
- 16 into 2021 in the midst of the pandemic. And you'll see
- 17 that borne out in our data we present here today.
- In the next several slides I'll present data
- 19 on influenza subtypes detected by several of our GEIS
- 20 network laboratories but reiterate again that flu
- 21 surveillance has been impacted significantly at these

- 1 sites -- restrictions and lockdowns that resulted in
- 2 reagent shortages, shipping delays, staffing reductions
- 3 that have really impaired normal surveillance
- 4 activities. And I have a few examples here what's been
- 5 going on. And then, of course, this has been taking in
- 6 place in an environment where resources are being
- 7 shifted to COVID surveillance and where flu rates are
- 8 just already diminished at least in some part by the
- 9 public health measures implemented in response to the
- 10 COVID pandemic. So you'll see this impact in the
- 11 coming slides as I present data by region. And in
- 12 fact, I'll move through these slides pretty quickly
- 13 since there's actually not a whole lot of data to
- 14 present for the current (audio skip).
- 15 All right. On the following subtype
- 16 calculation -- I'm sorry -- circulation charts, the
- 17 MMWR week is along the X axis and the percentage of
- 18 positive samples is along the secondary Y axis on the
- 19 righthand side. Number of specimens is located along
- 20 the primary Y axis on the left-hand side. We have
- 21 three years of data shown here starting way back in the

- 1 week 40 of 2018 on the left-hand side going to the most
- 2 recent data for 2021 on the righthand side. Different
- 3 color of bars, of course, indicating different
- 4 influenza types and subtypes.
- 5 This particular graph represents surveillance
- 6 data for military members including recruits and other
- 7 military dependents residing within the United States
- 8 and also some select civilian populations along the
- 9 U.S.-Mexico border. Influenza A, subtype H1N1 has been
- 10 the dominant subtype in the previous season. And low
- 11 levels of Influenza B were also evident. However,
- 12 Influenza B has pretty much been nonexistent this
- 13 season with our surveillance, and there has been no
- 14 cases detected in these populations in recent (audio
- 15 skip).
- 16 Okay. Here we show data from South America,
- 17 and this comes from U.S. and civilians as well as the
- 18 local military and civilian populations in Peru, Panama
- 19 and Columbia and Honduras. Respiratory data is
- 20 primarily limited to populations, though, in Peru and
- 21 Panama for the latter part of 2020 and early 2021. The

- 1 predominant subtype at the end of the previous season
- 2 was Influenza B for us with lesser circulation of H1N1
- 3 and H3N2, but there have been no flu cases detected for
- 4 the current season in this region.
- 5 This graph represents surveillance data for
- 6 military members and their dependents in nine countries
- 7 in Europe including some in Kosovo and Romania. And
- 8 this is actually the first time that the GEIS network,
- 9 at least, has had samples from these Eastern European
- 10 countries. This season's flu activity, like other
- 11 regions, is low. Few positives were detected for H1N1
- 12 and H3N2. And, of course, the European Centre for
- 13 Disease Prevention and Control notes a kind of similar
- 14 decline in positivity as of week 30 -- I'm sorry --
- 15 week 53 in 2020. Although, what they do show is kind
- 16 of an equal distribution across -- of 50 percent A and
- 17 50 percent B among the 100 or so samples that they
- 18 have.
- 19 This data here represents U.S. military
- 20 personnel and civilians as well as a handful of local
- 21 and national populations within the large number of

- 1 Asian countries in which we operate, including Bhutan
- 2 and Cambodia, Nepal, the Philippines, and Thailand.
- 3 And then more recently, we added Mongolia to this list
- 4 in early 2021. Surveillance in Asia showed dominance
- 5 of Influenza A (H3N2) almost exclusively, although
- 6 there has been no influenza detected over the past
- 7 several weeks through our surveillance. And this is
- 8 despite the fact that testing remained fairly steady
- 9 throughout most of the pandemic in this region for us.
- 10 This shows data for U.S. military and
- 11 civilians in select locations within eight countries in
- 12 the Middle East. In the Middle East, we had flu
- 13 activity declining at this time last year for us, but
- 14 there's been almost no positives detected in the past
- 15 several weeks with the exception of a few Influenza B
- 16 detections in the past couple months.
- 17 All right. Surveillance in East Africa comes
- 18 from primarily foreign military and civilian
- 19 populations in Kenya, Tanzania, and also Uganda. There
- 20 are some gaps in the data due to logistical issues
- 21 during the pandemic. But positivity rates were still

- 1 low even when testing was consistent coming from these
- 2 sites. Influenza circulated at low levels in 2020 and
- 3 2021 in general, with Influenza A predominating in
- 4 2020. In the past few weeks, Influenza B has been
- 5 detected in the region alongside Influenza A, subtype
- 6 H3N2.
- 7 And then, our final region to go over, here we
- 8 show surveillance data coming from military and
- 9 civilian populations in Ghana. When aligned with the
- 10 WHO Global Influenza Surveillance and Response System
- 11 data, that they're almost identical. Influenza A
- 12 (H3N2) and Influenza B were predominant in the current
- 13 flu season similar to the 2019-2020 flu season but
- 14 markedly lower compared to the prior year.
- Okay. All right. So in summary, our flu
- 16 surveillance data from our global lab partners is very
- 17 limited for this flu season. Our surveillance in North
- 18 America, South America, Europe, and Middle East
- 19 detected almost no cases, with a small amount of Flu A
- 20 activity in Europe and Flu B in the Middle East.
- 21 Surveillance in Asia showed H3N2 circulating at low

- 1 levels in weeks 29 to 42 but with nothing detected
- 2 after week 52 our network. Surveillance in East Africa
- 3 showed some low-level A activity with some Influenza B
- 4 activity beginning after week five. And our
- 5 surveillance activities in West Africa showed both H3N2
- 6 and Influenza B activity but at very low levels
- 7 compared to previous (audio skip).
- 8 All right. So next, I'll present the
- 9 phylogenetic analysis completed this year by our
- 10 partners at the U.S. Air Force School of Aerospace
- 11 Medicine, USAFSAM. And while in previous years our
- 12 partners at USAFSAM were able to acquire well over
- 13 1,000 samples for sequencing, this year's low influenza
- 14 rates really resulted in much less to work with for a
- 15 phylogenetic analysis. As I mentioned earlier, we only
- 16 had 12 samples to be sequenced this year and available
- 17 for analysis. All of these were H3N2 sequences from
- 18 Southeast Asia. And I'll note that September 2020
- 19 samples were included in this analysis in order to
- 20 capture as many relevant samples as we possibly could.
- 21 All 12 were in the clade 3C.2alb. 11 of the

- 1 12 collected in September/November or December 2020 in
- 2 Cambodia and Thailand were in the T131K amino acid
- 3 substitution group with the additional substitutions of
- 4 K83E, Y94N, I522M, G186S, F193S, and Y195F
- 5 substitutions noted, placing them in the 2A subclade
- 6 that, of course, Dr. Wentworth mentioned a lot earlier.
- 7 The remaining sequence collected from the Philippines
- 8 in December 2020 was in the T135K amino acid
- 9 substitution group with the additional substitutions
- 10 A138S and F193S placing it in the 1A subclade. The WHO
- 11 H3N2 strain recommendation for the 2021-2022 Northern
- 12 Hemisphere vaccine, which is in the 2A subclade, does a
- 13 good job of recognizing both the 1A and 2A viruses
- 14 identified by USAFSAM and represented here.
- 15 All right. Looking at the results by month,
- 16 the Influenza A (H3N2) T131K subgroup was predominant
- 17 at the start of the 2019-2020 season, and then the
- 18 T135K subgroup became predominant in the last half of
- 19 that season. However, the T131K subgroup kind of
- 20 reemerged and circulated at higher proportions through
- 21 the summer of 2020 and start of the 2020-2021 season.

- 1 Among our data for the current season, the 1A, or what
- 2 you could call the T135K-A, and then the 2A, or the
- 3 131K-A, are the only ones detected for the T135K and
- 4 T131K subgroups, respectively.
- 5 All right. So in summary, we've got very low
- 6 flu rates thus far for the current flu season which
- 7 left us with very little to work with just with those
- 8 12 sample sequences and sequence in all from our
- 9 partners in the Indo Pacific region. All of these
- 10 resided in the, as I said, the 3C.2alb clade with 11
- 11 falling in the 2A subclade and one in the 1A subclade.
- 12 Of note, the WHO strain recommendations for the 2021-22
- 13 Northern Hemisphere vaccine seems to inhibit viruses in
- 14 both these subgroups.
- 15 And while we have no sequences this year for
- 16 either H1N1 or Influenza B viruses, the clades
- 17 identified by USAFSAM at the end of the 2019-20 season
- 18 were consistent with this WHO recommendation for the
- 19 Northern Hemisphere. And so taken all together, our
- 20 sparse H3N2 phylogenetic data this year along with what
- 21 was seen with H1N1 and Influenza B data from the end of

- 1 last season does align well with the WHO recommendation
- 2 for the 2021-22 Northern Hemisphere vaccine as I
- 3 already mentioned. And the details of that
- 4 recommendation, of course, listed here, but I won't
- 5 read those out in detail, of course, since we've
- 6 already gone over that in previous presentations this
- 7 morning.
- 8 All right. Now lastly, I'm going to move on
- 9 to a discussion of a vaccine effectiveness estimates
- 10 performed by our Armed Forces Health Surveillance
- 11 Division Epi and Analysis Branch. To start off, I'll
- 12 mention that what typically comprises our annual
- 13 vaccine effectiveness analysis -- we usually actually
- 14 have three partners that contribute to this effort. We
- 15 have the Armed Forces Health Surveillance Division Air
- 16 Force Satellite at USAFSAM that usually provide vaccine
- 17 effectiveness analysis for our non-active duty
- 18 populations or beneficiaries that are not active duty
- 19 within the DoD. And the Naval Health Research Center
- 20 usually provides a VE analysis for military trainees or
- 21 what we would call the recruit population.

- 1 However, the small number of positive test
- 2 results coming out of these populations this year meant
- 3 that we didn't really have any kind of meaningful
- 4 analysis to present for vaccine effectiveness in the
- 5 populations. So I won't be presenting any of that
- 6 today. However, the Armed Forces Health Surveillance
- 7 Division Epi and Analysis Branch usually conducts our
- 8 vaccine effectiveness analysis for our active-duty
- 9 population more broadly. And fortunately we do have
- 10 some data to present for that population, which I'll
- 11 discuss here in the next few slides.
- 12 All right. So the study designed for this
- 13 analysis was a case test negative control design on
- 14 active component personnel from all the military
- 15 services including those stationed both in the United
- 16 States, or what we call CONUS, and those stationed in
- 17 foreign locations, what we typically refer to as
- 18 OCONUS. Cases were lab confirmed by positive rapid
- 19 tests or also by RT-PCR or culture assays. Test
- 20 negative controls were those that presented for care
- 21 and tested negative for flu either by RT-PCR or culture

- 1 assay. Those that were negative, though, only by rapid
- 2 test were excluded from the analysis.
- I'll present both the crude vaccine
- 4 effectiveness for both Influenza A and B along with
- 5 results adjusted for sex, age, prior vaccination, and
- 6 diagnosis. And due to the limited subtype data, I'll
- 7 only be able to present overall and type specific
- 8 vaccine effectiveness for this particular population.
- 9 All right. A little bit more on vaccine
- 10 information and what we had for those subtypes just to
- 11 make it clear. So inactivated influenza vaccine was
- 12 the only vaccine type used in this particular study
- 13 population. It's also important to note that our
- 14 active-duty population is a well-vaccinated population.
- 15 And flu vaccine is basically compulsory for all active-
- 16 duty personnel.
- 17 So almost all of the study subjects had been
- 18 vaccinated for flu in the prior five years. We had a
- 19 total of 219 Influenza A and 171 Influenza B cases to
- 20 include in the analysis. And nearly all our cases were
- 21 identified via rapid diagnostics tests, which is why we

- 1 have nearly no subtype results to include (audio skip).
- Our breakdown by age group of both cases and
- 3 controls is shown here. The U.S. military population,
- 4 as you are probably aware, are relatively young
- 5 compared to the general U.S. population, which, of
- 6 course, will limit the ability to generalize these
- 7 results to the broader U.S. population.
- 8 Here's the results of the analysis showing
- 9 overall vaccine effectiveness and then for both
- 10 Influenza A and B. The large difference between the
- 11 crude and adjusted effectiveness for Influenza A can
- 12 largely be explained by the distribution of cases over
- 13 time throughout the season. So a large portion of the
- 14 Influenza A cases were detected early in the season, in
- 15 fact, over 40 percent in just October alone. So that
- 16 is an explanation for that significant difference there
- 17 as we go to the adjusted vaccine effectiveness for
- 18 Influenza A. Whereas the influenza and test negative
- 19 controls for the Influenza B were more evenly
- 20 distributed throughout the whole (audio skip.)
- The adjusted vaccine effectiveness for A did

- 1 not reach statistical significance, so important to
- 2 note that. And while the effectiveness estimates for
- 3 Influenza B and any type of influenza were
- 4 statistically significant, do note the wide confidence
- 5 intervals on those estimates (audio skip) part to the
- 6 low number of cases included (audio skip).
- 7 So in summary, the overall midseason vaccine
- 8 effectiveness was 29 percent with this analysis. But
- 9 do remember that this is in a relatively young active-
- 10 duty military population. It was somewhat higher for
- 11 Influenza B at 40 percent, indicating some moderate
- 12 protection, notably lower, though, when we looked at
- 13 Influenza A. Although this did actually not reach
- 14 (audio skip). We, of course, look forward to next year
- 15 when we can (audio skip). I think we will be able to
- 16 include, of course, the non-active duty and basic
- 17 trainee populations that weren't included in this
- 18 (audio skip).
- 19 And there are a few limitations to note with
- 20 this analysis, specifically having to do with our
- 21 ability to generalize the results. With this case test

- 1 negative control design, all subjects included in the
- 2 study were individuals actually presented for medical
- 3 care. So it's not actually possible to maybe assess
- 4 vaccine effectiveness, vaccine impact on those that
- 5 were less severely affected by their infection. Also,
- 6 since the active-duty military population is highly
- 7 vaccinated, as I mentioned before, with nearly all
- 8 required to get the flu vaccine each year, this could
- 9 affect our estimates of vaccine effectiveness as the
- 10 repeated past exposures to vaccine could possibly
- 11 attenuate some future immune response to vaccination.
- 12 As I already alluded to, generalizing these results to
- 13 older, higher-risk populations may not be possible
- 14 given the age and general health status of our active-
- 15 duty military population.
- 16 So with that I'll just say thank you for your
- 17 time. I will just, of course, highlight all the
- 18 partners that contributed to this effort here within
- 19 the Armed Forces Health Surveillance Division, our Air
- 20 Force satellite, and then also the numerous partners at
- 21 our overseas laboratories, so many in fact, that I do

- 1 have to show it using two slides -- and then also our
- 2 partners in some of those partner nations that I
- 3 mentioned earlier, of course, appreciate and value all
- 4 the great, great work they contribute to this effort.
- 5 So with that I'll entertain any questions that may be
- 6 out there.
- 7 DR. HANA EL SAHLY: Thank you, Dr. Taylor. I
- 8 think Dr. Creppage is going to help take some of the
- 9 questions. Is that correct?
- 10 LTC KEVIN TAYLOR: Yeah. So if there's
- 11 anything that I may not be familiar enough with to
- 12 answer that she could perhaps answer, I may ask her to
- 13 chime in. But, yeah, I'm happy to entertain anything
- 14 you have.
- 15 DR. HANA EL SAHLY: All right. Great. It is
- 16 my interpretation that from your presentation and Dr.
- 17 Wentworth's presentation it seems that West Africa is
- 18 sort of the outlier in terms of having more flu
- 19 activity than others. Any potential explanation or
- 20 that or (audio skip)?
- 21 LTC KEVIN TAYLOR: Yeah. I don't really have

- 1 a good explanation for that. Obviously, what we saw
- 2 there was predominately H3N2. And I don't know if just
- 3 the -- is it perhaps impacted by the COVID pandemic,
- 4 just a set of public health measures that are different
- 5 than what's being implemented in other parts of the
- 6 world resulting in the flu transmission being a little
- 7 bit more possible in those kind of locations. At the
- 8 end of the day, we're still not detecting a whole lot
- 9 of cases of flu.
- 10 And part of what you might see there is just
- 11 the fact that flu rates for us in our surveillance is
- 12 just so low in so many of our other regions that the
- 13 small amount that we're seeing there really kind of
- 14 just jumps off the screen. But I'll let -- I don't
- 15 know if Dr. Wentworth is still on the line if he has
- 16 anything to add, given that he kind of did highlight
- 17 that in his presentation as well.
- 18 MR. MICHAEL KAWCYNSKI: David, Dr. Wentworth,
- 19 let makes sure that you're unmuted. Make sure you
- 20 unmute your own phone.
- 21 **DR. DAVID WENTWORTH:** Yeah. Yeah. Sorry

- 1 about that.
- 2 MR. MICHAEL KAWCYNSKI: No problem.
- 3 DR. DAVID WENTWORTH: Yeah. I think I don't
- 4 have a great explanation for it either. So I think it
- 5 was well presented. And we've seen in West Africa
- 6 lately that they have more continuous flu circulation
- 7 at low levels. And so, as was mentioned, maybe their
- 8 continuous low-level circulation is what's kind of
- 9 shows up brighter now that there is very low levels
- 10 everywhere else.
- 11 They also -- Togo and Cote D'Ivoire and some
- 12 of these countries have really done a great job doing
- 13 influenza surveillance in the midst of the COVID
- 14 pandemic. So it could be a little bit that there are
- 15 strong surveillance activities in some of the countries
- 16 in West Africa supported by U.S. investments and other
- 17 investments from other countries.
- 18 DR. HANA EL SAHLY: Okay. Thank you. Dr.
- 19 Portnoy?
- 20 DR. JAY PORTNOY: Great. Thank you. What
- 21 we're trying to do today is to predict which strains

- 1 will be dominant next year to put into the influenza
- 2 vaccine. Yet the pattern used to make that prediction
- 3 has basically been broken this year because there's
- 4 been very little influenza. Have there been previous
- 5 experiences where flu basically vanished for a year,
- 6 and does the pattern of emergence resume the following
- 7 year?
- 8 Or does it reset such that maybe a different
- 9 strain becomes dominant, and our predictions are
- 10 therefore not valid? Perhaps one strain could survive
- 11 low levels of flu better than another and re-emerge
- 12 more quickly. And also, could some strains even go
- 13 extinct when the levels are as low as they have been?
- 14 LTC KEVIN TAYLOR: Yeah. I will say that is a
- 15 great question. I mean, we've been discussing that
- 16 very question in our office here. Like, when we have
- 17 such low influenza rates, are we just going to get an
- 18 odd collection of flu viruses emerging next flu season
- 19 just because the conditions are just so drastically
- 20 different? I'm not aware of anything happening like
- 21 this in the recent past.

- We talked a little bit earlier about, I think,
- 2 2011-2012 being a down year, but that's nothing like
- 3 what we're experiencing here. And so I don't know if
- 4 we can use that as an example of what to expect, but
- 5 perhaps we could. I'll defer to anyone else on the
- 6 line who might be able to give their opinions on kind
- 7 of this unprecedented situation we're dealing with,
- 8 with flu, and what might possibly emerge next year.
- 9 I think we're all hoping that with what little
- 10 data we do have we're still able to make a good
- 11 estimation of what's going to become predominant. But
- 12 I'd love to hear some conversation and discussion by
- 13 others who might be considering this as well about just
- 14 kind of the unusual circumstances this year and how
- 15 that'll affect what may eventually emerge for next
- 16 season.
- 17 **DR. JAY PORTNOY:** I quess there isn't any?
- DR. HANA EL SAHLY: Okay.
- 19 DR. DAVID WENTWORTH: I can make a brief
- 20 comment about that. I totally agree with Dr. Taylor.
- 21 You can never predict what's going to happen with

- 1 influenza, so it's very challenging. And we're in
- 2 unprecedented times with the level of circulation. And
- 3 we don't know what will happen when people really start
- 4 mixing more and the viruses have to compete with each
- 5 other for fitness advantages.
- But I'd also reiterate that we're not only
- 7 predicting what will circulate. I think this is one of
- 8 the fallacies that gets proposed in the press and
- 9 everywhere else. We're using multiple factors to
- 10 understand what represents the greatest risk to the
- 11 human population. And oftentimes, that is the new
- 12 variant that is going to predominate.
- 13 But what we know about influenza is that many
- 14 variants co-circulate every season. And the more we
- 15 sequence the virus genomes of many, many specimens the
- 16 more we know that's true. And we talk about flu
- 17 viruses like they're one virus when, in fact, an
- 18 individual is infected with many different variants
- 19 simultaneously because of the mutation rate of the
- 20 virus.
- 21 So when I show you that human serology data

- 1 and we look at vaccine effectiveness data, we're also
- 2 looking at what represents a risk. And where human
- 3 sera is low across many age groups may be a predictor
- 4 of what can predominate but also is a predictor of what
- 5 represents a great risk to the population. Therefore,
- 6 if we select vaccine candidates in those groups,
- 7 presumably we'll be at least immunizing against the
- 8 viruses of the greatest risk.
- 9 And so that's part of what went into the
- 10 selection probably more so this season when you have
- 11 less data on the viruses circulating. And the viruses
- 12 that are circulating -- it's a great question that you
- 13 had -- and the viruses that are circulating are
- 14 different regionally. So that's one of the challenges.
- 15 Over. And I would just also add that any flu
- 16 vaccination is better than no flu vaccination.
- 17 DR. HANA EL SAHLY: Dr. Kurilla?
- 18 DR. MICHAEL KURILLA: Thank you. Kevin, I'm
- 19 curious about -- I don't know why my camera is not
- 20 working now. Kevin, I'm curious about how does the
- 21 vaccine effectiveness you measured this year compared

- 1 to prior years with DoD? And how well does that align
- 2 with CDC estimates in the past of overall vaccine
- 3 effectiveness?
- 4 LTC KEVIN TAYLOR: Yeah. Good question. So
- 5 this is comparable to what we see in DoD each year.
- 6 I'll also note, though, that often with our vaccine
- 7 effectiveness estimates they are typically lower than
- 8 what we see for estimates for the broader U.S.
- 9 population. And so there could be some reasons for
- 10 that. I had kind of mentioned a little bit in my
- 11 limitations slide about how the prior -- high rates of
- 12 vaccination years prior might influence how we -- our
- 13 ultimate calculation of vaccine effectiveness for a
- 14 current year's vaccine.
- But I will, yeah, again just kind of mention
- 16 and reiterate that typically what we see in our vaccine
- 17 effectiveness estimates are lower than what we see for
- 18 the general U.S. population. So I would anticipate if
- 19 we were able to do that for the general U.S. population
- 20 this year, you would probably see something higher than
- 21 what I reported there.

- DR. HANA EL SAHLY: Okay. Dr. Holly Janes.
- 2 DR. HOLLY JANES: Thank you. I wanted to
- 3 follow up -- following up on Dr. Portnoy's question and
- 4 interrogate just a little bit further in the
- 5 implications of -- Dr. Wentworth, you mentioned that
- 6 the cross protection that the parents in the serology
- 7 data that you presented earlier. And what might we
- 8 speculate would be the potential impact of having
- 9 essentially missed a flu season? Might we expect a
- 10 lower benefit of cross protection when the viruses
- 11 emerge and just following up on that in terms of
- 12 specification about potential efficacy or effectiveness
- 13 of the flu vaccines for the 2021 season?
- 14 LTC KEVIN TAYLOR: Yeah. So you're asking
- 15 about the cross protection from prior vaccine for
- 16 coming flu season? Is that what you're getting at?
- 17 **DR. HOLLY JANES:** Yes. I mean specifically
- 18 when these viruses emerge, it's very difficult to
- 19 anticipate what might emerge. But I guess a hypothesis
- 20 might be, I suppose, that the viruses that emerge might
- 21 be -- people have not largely been exposed for a year.

- 1 I don't know what the vaccination rates were last year.
- 2 But might there be lower levels of memory immune
- 3 responses to these viruses when they do emerge, and how
- 4 might that influence the epidemic that we see in the
- 5 2021 season?
- 6 LTC KEVIN TAYLOR: Yeah. Oh, I see what
- 7 you're saying. Okay. Yeah. And I don't know if I can
- 8 really provide a great answer for that. I don't know.
- 9 I see here -- I think I saw Dr. Wentworth popping up
- 10 there. If he wants to chime in again, I certainly will
- 11 defer to him whenever I get an opportunity because I
- 12 know he's going to have something much more intelligent
- 13 to add than I. So, Dr. Wentworth, do you want to
- 14 mention something?
- DR. DAVID WENTWORTH: Well, I think I'd agree
- 16 with you. I think we don't know, again, if the low-
- 17 level circulation not stimulating -- like, many people
- 18 might get a common-cold-like phenotype with a low-level
- 19 circulation of flu. And I think what you're asking is
- 20 has this reset everybody's antibody level to a lower
- 21 level, and could we be in more trouble? I guess my one

- 1 comment would be I don't know.
- 2 And the second part of it would be if you get
- 3 vaccinated, though, we would hope that that would
- 4 stimulate immunity from the prime of the vaccine, as
- 5 well as if you have memory responses from previous
- 6 seasons, it would stimulate some of that memory. So I
- 7 think that since we don't know what will happen, if
- 8 there could be a low level of population immunity as a
- 9 whole, the vaccine should help prevent that kind of a
- 10 bigger epidemic because of that low-level immunity. So
- 11 what I'm saying is I think the vaccine will induce
- 12 immunity even if you haven't seen flu in the previous
- 13 year because you've seen it in years past, and you've
- 14 been vaccinated. Many people have been vaccinated
- 15 previously. Over.
- 16 DR. HANA EL SAHLY: Okay. Thank you. I think
- 17 we're going to have time for one more question. We're
- 18 a little over time. So Dr. Hayley Gans.
- 19 DR. HAYLEY GANS: Thank you. I just had a
- 20 question related to -- we heard a little bit earlier
- 21 about vaccine usage, so you talked about efficacy. We

- 1 heard -- and I didn't know if it was related only to
- 2 the United States -- but the rates of vaccination are
- 3 fairly similar this year or this season as opposed to
- 4 the previous seasons. Is that the same for around the
- 5 world, globally, and how much of the population
- 6 globally actually does receive a vaccination? And how
- 7 does that impact what strains would then circulate?
- 8 LTC KEVIN TAYLOR: Yeah. I'm sorry. I don't
- 9 know globally in terms of what vaccination rates are
- 10 for this year. Yeah. I can certainly speak more to
- 11 what we saw in DoD. As I mentioned in my slides, our
- 12 vaccination rates in the group I presented on is very
- 13 high because it is a compulsory vaccine for active-duty
- 14 military. And that's the same year in and year out. I
- 15 cannot, though, speak too much about what the
- 16 vaccination rates are globally. I apologize, sorry
- 17 about that.
- 18 DR. HANA EL SAHLY: Okay. Thank you. So
- 19 thank you, Dr. Kevin Taylor, for presenting these data.
- 20 Next on the agenda is Dr. Manju Joshi, lead biologist
- 21 of the Division of Biological Standards and Quality,

- 1 Office of Compliance and Biologics Quality at CBER.
- 2 Dr. Joshi.

3

4 CANDIDATE VACCINE STRAINS AND POTENCY REAGENTS

5

- 6 DR. MANJU JOSHI: Thank you for the kind
- 7 introduction. So today -- I am Dr. Manju Joshi from
- 8 the Division of Biological Standards and Quality
- 9 Control, which we refer to as DBSQC, and Office of
- 10 Compliance. And I will give comments here giving you
- 11 an idea about the candidate vaccine strains and potency
- 12 reagents for '21-'22 Northern Hemisphere influenza
- 13 season.
- In my presentation, I will go over the WHO
- 15 virus recommendations for the upcoming seasonal
- 16 influenza vaccine for '21-'22. I'll go over the
- 17 available potency reagents for the recommended
- 18 components. And there'll be a couple of slides where
- 19 I'm going to be emphasizing on what kind of a plan we
- 20 do have for '21-'22 Northern Hemisphere season and a
- 21 couple of key general comments. And let me make it

- 1 clear that those couple of slides will be more to the
- 2 advantage also for my communication with the vaccine
- 3 manufacturers in the audience. So I think for me, this
- 4 is one chance to tell them about certain expectation
- 5 and things we would like to have to run the campaign
- 6 smooth.
- 7 So as far as in terms of A of H1N1 target
- 8 concerned, the WHO recommended virus for `21-`22
- 9 Northern Hemisphere season vaccine is different from
- 10 '20-'21 season but is the same as those recommended for
- 11 '20-'21 Southern Hemisphere season. WHO has
- 12 recommended that A/Victoria/2570/2019pdm09-like virus
- 13 be the candidate that's the recommended strain for egg-
- 14 propagated vaccine. And for cell propagated or
- 15 recombinant vaccine, WHO recommendation is for
- 16 A/Wisconsin/588/2019pdm09-like virus. In the interests
- 17 of time, I'm not going to go over the list. But the
- 18 list of all the candidate vaccine viruses that are
- 19 available for the strains can be accessed at the WHO
- 20 website, which I have listed at the bottom of the
- 21 slide.

- So if the Committee approves the use of the
- 2 recommendation made by WHO, let's look over what is the
- 3 status of the potency reagents for the strains. And if
- 4 we look at the various reagents available for H1N1
- 5 strain, yes, this strain was recommended for Southern
- 6 Hemisphere. All the other (inaudible) produced the
- 7 reagents. And I have listed all the reagents
- 8 available. We have egg-based reagents available from
- 9 CBER, as well as from TGA and NIBSC in U.K. Similarly,
- 10 CBER had prepared the reagent for cell base for one of
- 11 the candidates, which was A/Delaware/55/2019.
- So coming to the H3N2 strain in the vaccine,
- 13 WHO recommended that for '21-'22 Northern Hemisphere
- 14 season vaccine, the recommendation will be different
- 15 from '20-'21 season, as well as different from '20-'21
- 16 Southern Hemisphere season. And as previously was
- 17 pointed out, this time the WHO recommendation for egg-
- 18 propagated vaccine is for an A/Cambodia/e826360/2020-
- 19 like virus. And similarly, the same recommendation is
- 20 for the cell-culture-propagated as well as for
- 21 recombinant vaccine.

- 1 And again, the candidate vaccine viruses, the
- 2 whole list can be accessed at the WHO website. But
- 3 I'll just briefly mention here, since this is a new
- 4 strain, absolutely. So currently for the CVVs, which
- 5 are for antiviral vaccines, will include A/Cambodia
- 6 wild type virus, as well as IVR-224 reassortants, which
- 7 are available from WHO CCs and from NIBSC, UK.
- 8 The second, so antigenically similar virus, is
- 9 the A/Tasmania. And both wild type and IVR-221 has
- 10 been recommended as a candidate vaccine virus. And
- 11 they are also available from the same sources.
- 12 Similarly, for cell-culture-based CVVs which are
- 13 antigenically like A/Cambodia are available for both
- 14 A/Cambodia, as well as for A/Tasmania/503 virus. And
- 15 they available from VIDRL in Australia. This isn't a
- 16 new strain. And as far as the potency reagents for
- 17 H3N2 component is concerned, we here at CBER will work
- 18 with other essential regulatory laboratories and
- 19 manufacturers to prepare and calibrate the reagents for
- 20 measuring the potency of A/Cambodia(H3N2)-like
- 21 component of the vaccine produced using different

- 1 platforms.
- When looking at the Influenza B, WHO
- 3 recommended virus for 2021-'22 Northern Hemisphere
- 4 season for both trivalent and quadrivalent vaccines is
- 5 same as for the '20-'21 Northern Hemisphere and '20-'21
- 6 Southern Hemisphere season. But for egg-propagated
- 7 vaccines, WHO has made the recommendation that
- 8 B/Washington/02/2019-like virus and B/Victoria/2/87
- 9 lineage be the components of the vaccine. And
- 10 similarly for the cell-culture propagated or
- 11 recombinant vaccine, the B/Washington-like virus has
- 12 been recommended. Again, the complete list of
- 13 different available candidate vaccine viruses can be
- 14 found at the WHO website listed here.
- This vaccine component has been going on for
- 16 last few seasons. Reagents are available for
- 17 B/Washington from various ERLs. We here at CBER have
- 18 prepared the B/Washington represented in the
- 19 (inaudible) for use in combination with antiviral
- 20 vaccine as well as for B/Darwin/7/2019, which is a
- 21 candidate vaccine flu virus for the cell platform. And

- 1 CBER had also (inaudible) the reagents for B/Washington
- 2 for a recombinant platform. So reagents -- and other
- 3 ERLs (phonetic) also have some of the reagents
- 4 available.
- 5 Coming to the second B component in vaccine
- 6 for quadrivalent vaccine, the WHO recommends that for
- 7 2021 Northern Hemisphere season for the quadrivalent
- 8 vaccine, the recommendations will remain the same as
- 9 those for '20-'21 as well as for '20-'21 Southern
- 10 Hemisphere. So -- and eventually happens that once
- 11 again we have the B/Phuket/3073/2013-like virus
- 12 recommended for both egg-propagated vaccine as well as
- 13 for cell culture and recombinant vaccine. And the
- 14 B/Phuket has been with us for a long time as
- 15 (inaudible). Then the various candidate vaccine
- 16 viruses are listed again on the WHO site. And the list
- 17 always gets updated as the new viruses become
- 18 available.
- 19 Coming to the potency (inaudible) reagents
- 20 available for the B/Phuket-like viruses from the
- 21 Yamagata type B lineage, pretty much all the ERL have

- 1 met after (inaudible). And a variety of reagents are
- 2 available from each ERL. As far as CBER is concerned,
- 3 we do have a B/Phuket representative reagent and
- 4 antisera for B/Phuket wild type virus for egg
- 5 platform.
- 6 We have two different reagents for cell-type
- 7 platform, which are one for the B/Singapore/INFTT-16-
- 8 0610/2016-like virus and for B/Utah. CBER has also
- 9 prepared a reagent for B/Phuket for use in combination
- 10 with the recombinant platform.
- 11 So this was a (inaudible) to the candidate
- 12 vaccine viruses and available reagents. But how do we
- 13 go on to create a vaccine campaign and make sure the
- 14 vaccines are available to the public in a timely
- 15 manner? This is the slide I mentioned that I would
- 16 like to address more to the stakeholders and
- 17 manufacturers.
- Now, I would like to address to them to say
- 19 that we would like that manufacturers provide us
- 20 information in regard to the strains they will be
- 21 using, a particular candidate vaccine virus, what kind

- 1 of reagents they are planning because some of the
- 2 reagents are already available, both antigen and
- 3 antiserum. And the main reason for asking these things
- 4 is that this is very important for us in DBSQC to plan
- 5 our flu program, as well as this involves the reagent
- 6 calibration activities.
- 7 If the reagents our manufacturers are using
- 8 from outside, some other ERLs, we have to make sure
- 9 that we find a way forward for getting those reagents.
- 10 We have to have the whole program in place for doing
- 11 the monovalent testing and the complete lot release
- 12 testing. And I make this appeal every year. And
- 13 everybody has been really cooperative about this. And
- 14 I think that was the reason why we were able to
- 15 successfully do a lot of things even with the pandemic
- 16 situation and all the social distancing regulations in
- 17 place. So thank you, all the manufacturers, for that.
- 18 And lastly, a couple of general comments I
- 19 would like to make is manufacturers should remember
- 20 that only CBER authorized reagents should be used to
- 21 test potency of vaccine marketed in the U.S. We are

- 1 always open, so you can always get in touch with us,
- 2 consult with us. And we will guide you through that.
- When it's a time concern, this is a
- 4 requirement for them to submit monovalent samples.
- 5 They must be submitted to the DBSQC. And please email
- 6 me -- my email address is here -- regarding the
- 7 dispatch of samples, your test results, et cetera.
- 8 Copy them to Dr. Shahabuddin and Dr. Eichelberger. I
- 9 have included their emails on the left.
- 10 If you have any inquiries regarding CBER
- 11 Reference Standards and Reagents, their availability
- 12 and shipping, please contact CBER Standards at
- 13 CBERshippingrequests@fda.hhs.gov, and you'll be helped
- 14 on that. And lastly, I would like to say that, please,
- 15 we are always open to your feedback. Send all your
- 16 feedback and comments on the suitability or use of the
- 17 reagents provided and any other aspect of our services
- 18 to the CBERinfluenzafeedback@fda.hhs.gov mailbox. It
- 19 does have the address up here. We'll be happy to read
- 20 it. And we would like to know how things are going.
- 21 So I think with this, thank you very much.

- 1 And I can take any questions.
- DR. HANA EL SAHLY: Thank you, Dr. Joshi. Any
- 3 of our colleagues on the Committee with questions for
- 4 Dr. Joshi? If so, please raise your hand in Adobe.
- 5 Yeah. I don't think I see questions. Thank you, Dr.
- 6 Joshi.
- 7 DR. MANJU JOSHI: Thank you.

8

9 COMMENTS FROM MANUFACTURER REPRESENTATIVE

10

- 11 DR. HANA EL SAHLY: Dr. Lauren Parker from
- 12 AstraZeneca will next give comments from the
- 13 manufacturers' perspective. Dr. Parker?
- DR. LAUREN PARKER: Hi, good afternoon and
- 15 good evening, everyone. Thank you for the
- 16 introduction. I'm really pleased to be able to be here
- 17 today in the virtual space, or my kitchen in Liverpool
- 18 in the U.K., to give this presentation on behalf of
- 19 industry, in particular, the influenza vaccine
- 20 manufacturers that supply the U.S. market for the
- 21 Northern Hemisphere influenza season.

- 1 I'd just like to take this moment just before
- 2 I go through the presentation to say thank you to my
- 3 industry colleagues Bev Taylor, Elizabeth Nordmeyer
- 4 (phonetic), Sam Lee, and Penny Post for their support
- 5 and help putting this presentation together and further
- 6 critical review of the content. So what I'm going to
- 7 talk about today is our industry perspective looking
- 8 back over the 2020-21 flu vaccine supply manufacturing
- 9 campaign.
- 10 Okay. Disclosure statement from myself. As
- 11 you're aware, I am an employee of AstraZeneca. I work
- 12 at our Liverpool site in the U.K. And I am the
- 13 scientific lead of our live attenuated influenza
- 14 vaccine strain development program. My disclosure is I
- 15 do own shares in the company.
- 16 Okay. So influenza is an often underestimated
- 17 disease, and it can be serious. It can cause
- 18 significant morbidity and mortality rates and is often
- 19 quite -- it's an economic burden. It is difficult to
- 20 measure this, but it has been showed to be a
- 21 significant economic burden. And the best way to

- 1 prevent influenza remains vaccination. So for a flu
- 2 vaccination campaign to be successful, it really is a
- 3 balancing act.
- So there's, I would say, three overarching
- 5 areas which need to be well balanced. They need to
- 6 work smoothly together for us to have a successful
- 7 campaign. So, of course, we need well matched vaccine
- 8 component strains which recognize and protect against
- 9 the circulating influenza strains. Manufacturers need
- 10 to be able to supply sufficient quantities to support
- 11 the recommendations and increase immunization rates
- 12 where we can. And, of course, all of that needs to be
- 13 available in a timely fashion before the upcoming
- 14 influenza season.
- 15 So it really does take a team to beat
- 16 influenza. There are a lot of moving parts to all of
- 17 this. And everyone here is involved in some way. And
- 18 in industry, we quite often like to refer to the
- 19 analogy as like a relay race. So if you think of a
- 20 relay race, you've got multiple runners at different
- 21 points along the track running at speed. They're

- 1 handing off batons to the next runner while they're
- 2 already running.
- 3 So if you think of the collaborating centers
- 4 or the ERLs or the high growth reassortant labs as the
- 5 first runners, manufacturers will be the first
- 6 receiving runners. And we start running even before
- 7 we've had that baton handed to us. And generally,
- 8 that's us beginning our manufacturing campaign at risk.
- 9 So in order for us to be able to supply to the market
- 10 at the beginning of the vaccination season, we need to
- 11 begin manufacturing our commercial bulks prior to the
- 12 WHO recommendation announcement.
- 13 And along the relay racetrack, there are some
- 14 interesting hurdles for us to jump over as well.
- 15 There's multiple batons, multiple providers, and a lot
- 16 of potential hurdles. So a relay race is a really nice
- 17 way of thinking about it. Also, I'm a fan of thinking
- 18 about it like trying to build a plane while flying it
- 19 at the same time.
- 20 So this then moves me nicely onto the hurdle
- 21 looking back at the 2020-21 season. I'll just start by

- 1 commenting on the last hurdle or the first hurdle in
- 2 the slide, whichever way you're looking at it, which is
- 3 unexpected or late changes. So this actually isn't
- 4 something that we encountered in the 2020-21 season.
- 5 But we have encountered this before. And I just wanted
- 6 to keep it on there as a reminder as it can have a big
- 7 impact to the manufacturing and selection campaigns and
- 8 getting things to market ready for the immunization.
- 9 So manufacturing timelines and the Nagoya Protocol,
- 10 which I'll talk more specifically about at the end of
- 11 the presentation, these are hurdles that like to throw
- 12 themselves in our way every season.
- The manufacturing timelines, one, was off its
- 14 base a bit more this season because of the COVID-19
- 15 pandemic and the increased amount for vaccines. But
- 16 overall the COVID-19 pandemic is just -- it's
- 17 completely thrown us into uncharted waters and
- 18 uncharted territory. And it was multiple hurdles all
- 19 stacked really closely together.
- 20 So some of you will be familiar with this
- 21 slide. We have shown it before. It's just a nice

- 1 timeline summary of the annual seasonal flu vaccine
- 2 manufacturing timeline to supply the U.S., beginning
- 3 with the top blue arrow just under March, which is the
- 4 VRBPAC strain selection ratification. So I'm not going
- 5 to go through every single part of this slide. I just
- 6 want to call out a few highlighted points for it.
- 7 So a big point here is, essentially, it takes
- 8 around six months to manufacture, release, and
- 9 distribute the required number of doses for the season.
- 10 So if we look back at the 2020-21 season, over half a
- 11 billion doses that were required to be produced and
- 12 distributed globally -- and that was not just from one
- 13 vaccine platform or one vaccine technology. It's three
- 14 different vaccine technologies. So we've already
- 15 discussed cell versus egg versus recombinant. And then
- 16 the egg vaccine is split farther into the inactivated
- 17 influenza vaccine and the live-attenuated influenza
- 18 vaccine.
- 19 The vaccination period itself is quite rigid.
- 20 It's quite inflexible. And that's because that's --
- 21 the infrastructure is set up that way so from September

- 1 to November. And some of them are starting to be
- 2 pushed out now. There's so many moving parts it would
- 3 take hours to list them all and go through them all.
- 4 But flu seasons are changing in their timing, and
- 5 there's a constantly increasing demand.
- 6 So with regards to getting supplies to U.S.
- 7 market for the previous season, it took the collective
- 8 manufacturers initially six months to supply all of the
- 9 first doses. And within eight months the final doses
- 10 were supplied. So this just takes us onto a data
- 11 summary of the numbers of doses that were distributed
- 12 within the U.S. last season. So that is the graph on
- 13 the left with the green data slide. And I think the
- 14 graph with the blue data slide is a nice representation
- 15 of the fact that, with the exception of this sharp peak
- 16 seen in 2010 which corresponds to the 2009 H1N1
- 17 pandemic distribution, it's just increasing constantly.
- 18 And what's amazing and something that we
- 19 should all be really proud of is that, despite all of
- 20 the challenges thrown at everyone during the pandemic,
- 21 the number of doses of influenza vaccine supplied to

- 1 the U.S. was greater than 10 percent higher than the
- 2 previous season. And the previous season's number was
- 3 already high. So just to give you some exact numbers
- 4 to clarify that, as of the 12th of February this year,
- 5 we supplied 193.7 million doses compared with 174.5
- 6 million doses at the same reporting period last season.
- 7 And moving on now to the Northern Hemisphere
- 8 recommendations, I'm not really going to go through
- 9 this. Dr. Joshi has gone through it as has Dr.
- 10 Wentworth. I think most of us have in the second half
- 11 of the presentation.
- Just a couple of things from a manufacturing
- 13 perspective to really highlight is that, because we
- 14 have this extreme diversification that just continues
- 15 with H3N2s -- they really are amazing -- the egg
- 16 recommended H3N2 strain component has been updated for
- 17 the past four seasons. And we are starting to see a
- 18 lot more diversification in the H1N1s, which was
- 19 highlighted really nicely in Dr. Wentworth's slides
- 20 there. So we have been seeing more recent updates for
- 21 the H1N1 component as well, compared to post 2009

- 1 pandemic where the recommended California/07 strain was
- 2 -- it was a recommendation for several years.
- 3 So looking back in a general overview way of
- 4 the 2020-21 Northern Hemisphere campaign, as we all
- 5 noted, there were three strain changes updated from the
- 6 2019-20 season. The H1s were updated. The H3N2s and
- 7 the B/Victoria lineage -- vaccine composition was
- 8 updated as well.
- 9 Due to the pandemic and the complete unknowns
- 10 of what would happen if there were co-circulation
- 11 between SARS-CoV-2 and influenza and to reduce the
- 12 burden on everyone's healthcare system, the increased
- 13 global demand for flu vaccines was around 20 percent
- 14 globally. And as I said previously, I can't remember
- 15 the exact numbers, but it was around 11 to 12 percent,
- 16 so greater than 10 percent overall increase in the
- 17 numbers of doses actually supplied to the U.S. There's
- 18 some really excellent collaborative things went on
- 19 between WHO, ERLs, and industry last season which
- 20 really helped the campaign feel very open and
- 21 collaborative and smooth running.

- So we had these -- we had biweekly, WHO
- 2 industry teleconferences September to February. And
- 3 the Cross Functional Working Group Influenza Hub has
- 4 been fully implemented. And it's been really important
- 5 and key for information sharing and for CVV updates,
- 6 reagent availability. It's been fantastic, and it's a
- 7 massive credit to Sam Lee and Jason Long at NIBSC
- 8 (MHRA). They've really spearheaded this and got it
- 9 going, and it's been fantastic.
- 10 So going back to everyone's favorite subject,
- 11 the COVID-19 pandemic, so at the beginning we just had
- 12 no idea how this was going to affect the campaign. And
- 13 initially, there did appear to be some impact on
- 14 international transport and freight. However, overall,
- 15 the issues were resolved, and the impacts were very,
- 16 very minor.
- 17 One thing that has continued to be of a
- 18 concern is the Nagoya Protocol and the ABS, so access
- 19 and benefit sharing legislation issues. These continue
- 20 to be of concern. I'm going to highlight more
- 21 information about that when I come to the last few

- 1 slides.
- 2 So something to -- another really positive
- 3 thing to point out from last season -- I won't go
- 4 through all of the specific details from this table.
- 5 But this is a summary of the supply of the critical
- 6 potency reagents for the 2020-21 season. There was,
- 7 obviously, concern over reduced staffing levels, staff
- 8 being stretched, and a reduced focus on influenza.
- 9 However, our ERL colleagues prioritized the
- 10 generation and calibration of these critical potency
- 11 reagents. And the efforts made by them, which were
- 12 phenomenal, really fantastic, it resulted, actually, in
- 13 our calibrated potency reagents being available in a
- 14 very similar timeframe to previous seasons. So this
- 15 was one of the things that really contributed to the
- 16 supply of the 2020-21 flu vaccine manufacturing
- 17 campaign being a success.
- So a few of these things have been discussed
- 19 at great length and are mentioned -- touched upon today
- 20 already. I'd just like to briefly go over them again
- 21 from an industry perspective. So obviously, increased

- 1 demand for flu vaccines, which I've said already,
- 2 reduced staff numbers working, that's a problem
- 3 everyone's had to deal with. There was potential for
- 4 supply chain and logistical challenges, which were
- 5 overcome and had a minimal impact.
- 6 Something that we were very concerned about at
- 7 the start of the pandemic was could SARS-CoV-2 be an
- 8 adventitious agent in the clinical isolate sent from
- 9 the National Influenza Centers to the collaborating
- 10 centers for expansion in cells or eggs? But colleagues
- 11 at VIDRL in Melbourne and the CDC did some really neat
- 12 studies and published them to demonstrate that SARS-
- 13 CoV-2 is actually not capable of replicating
- 14 efficiently in the substrates that we use to make our
- 15 flu vaccines. So that is eggs and the qualified MDCK
- 16 cell lines and (inaudible) cell line. So that was done
- 17 really quickly, really great work. So we got that
- 18 confirmation very early on in the season.
- 19 And, of course, something that everybody's
- 20 spoken about is the massively reduced numbers of
- 21 circulating flu viruses. And the numbers that we've

- 1 pulled together here really are quite sparse, I think,
- 2 so a 62 percent drop in the number of flu positive
- 3 virus shipments to the collaborating centers and a 94
- 4 percent drop in genetic sequences uploaded to GISAID.
- 5 This is the influenza sequence and sharing platform
- 6 that Dr. Wentworth mentioned earlier as well.
- 7 So you put all of that together and not only
- 8 is it even more complicated and complex for the WHO to
- 9 review of all the data from the small number of viruses
- 10 and make a recommendation; it meant that as
- 11 manufacturers we had a much smaller pool of strains to
- 12 work with. So in previous seasons, as a collective we
- 13 could have been looking at up to 100 wild-type strains
- 14 that were investigated for their potential as a
- 15 reassortment -- or reassorted and characterized. And
- 16 it was just -- it was not even near that. You could
- 17 probably count on two hands the numbers of strains that
- 18 were available. So it presented some challenges with
- 19 regard to that and to be expected given the situation.
- 20 So I've mentioned the Nagoya Protocol a couple
- 21 of times already. So I'll briefly mention what it is

- 1 and why it's a concern for flu vaccine manufacturers
- 2 and, therefore, vaccine supply. So the Nagoya Protocol
- 3 is a supplementary agreement to the Convention on
- 4 Biological Diversity. It essentially exists as a legal
- 5 framework for the implementation of the fair and
- 6 equitable benefit sharing prior to research and
- 7 development or commercialization.
- 8 So basically, it protects biodiversity when
- 9 genetic resources are utilized from different
- 10 countries. So pathogens do fall into the scope of
- 11 this. And each country who is a signatory to this or
- 12 who has their own ABS legislation, it's their right to
- 13 decide whether or not pathogens are included in that.
- 14 So seasonal influenza may come under that.
- So we do need to take the time to formalize
- 16 any legal benefit sharing arrangements that may fall
- 17 under the Nagoya Protocol. This can take a range of
- 18 time depending on how complex the legislation is and
- 19 what's expected of the manufacturers by the country.
- 20 It can take months to actually get everything necessary
- 21 in place.

- 1 And if you're -- pass your mind back to my
- 2 slide at the beginning -- it takes up to six months to
- 3 get the vaccines delivered. So at that start of that
- 4 six months we need to already -- we need to have our
- 5 seeds. We need to be getting going with release
- 6 testing, making seed lots, and those kind of things.
- 7 So you can see where it can be problematic. So it does
- 8 offer a risk to seasonal impact -- seasonal flu vaccine
- 9 supply.
- 10 And something just to point out, so there are
- 11 a lot of countries in the world that actually sort of
- 12 negate the Nagoya Protocol. So they don't sign up to
- 13 it. And the U.S. is one of these regions, as is
- 14 Australia and the U.K. So if people use an influenza
- 15 virus from Scotland, A/Edinburgh or A/Iowa from the
- 16 U.S., we don't hold the recipient to any of this
- 17 legislation.
- 18 However, that doesn't mean that those
- 19 countries are not held to it from a recipient country.
- 20 So just because the U.S. themselves wouldn't actually
- 21 hold anybody to these legislative rules, any resources

- 1 coming in from another state or another country to the
- 2 U.S. -- that would still need to be investigated. And
- 3 we would need to conduct ourselves according to the
- 4 legislation in that country.
- 5 So what you can see from this table is these
- 6 are the CVVs that we have worked with, developed,
- 7 characterized, and, in a lot of places, manufactured
- 8 into product since the 2018-2019 season. And there is
- 9 also another five that have no established
- 10 authorization. And what I think is good to take home
- 11 from this is, if you look at the column on your right
- 12 on the screen, which is the current candidate vaccine
- 13 viruses that have no established authorization, it's
- 14 the longest list.
- So having no established authorization
- 16 essentially puts manufacturers in a bit of a limbo
- 17 situation. And a lot more countries are adopting this.
- 18 As of the 21st of February, 129 countries have ratified
- 19 and entered into the Nagoya Protocol. So it's not
- 20 always clear as well. There's not a one size fits all
- 21 for this.

- 1 So countries are well within their rights to
- 2 create their own legislation and their own rules
- 3 regarding this. It's not always clear. And often,
- 4 once we've gone looking for that legal information,
- 5 it's sometimes not in English. It requires long
- 6 translations. So there's an ever-increasing time to
- 7 get clarity and receive authorization to actually use
- 8 the viruses.
- 9 So this lack of legal clarity is a real risk
- 10 and concern for us in industry as manufacturers. So we
- 11 could be looking at delays due to getting that required
- 12 clarification, negotiating where need be, and getting
- 13 the official notification costs addressed and resolved.
- 14 Like I said, this is not something that we really
- 15 encountered and had to actively spend a lot of time
- 16 resolving for the 2020-21 season. But it is becoming
- 17 an ever-increasing issue that we need to keep our
- 18 finger on the pulse of.
- 19 So I will finish up now. Just to summarize,
- 20 there's a continued increase in demand for vaccines but
- 21 in the same constrained timeframe. Any delays or

- 1 unexpected strain selections have the potential to
- 2 impact supply and, therefore, a knock-on effect on the
- 3 vaccine usage and uptake. And we think that flu
- 4 vaccination, of course, is of great importance.
- 5 Vaccination is still the best means of preventing
- 6 influenza. And because of the complete unknown
- 7 landscape that we're in now with regards to flu and
- 8 respiratory viruses, flu vaccination will continue to
- 9 be of massive importance going into the next season as
- 10 COVID vaccinations increase and things like
- 11 restrictions and travel bans, social distancing -- when
- 12 all of those things are lifted.
- 13 We've never been in a situation like this
- 14 before. And we don't know what's going to happen. We
- 15 can never predict what happens with flu at the best of
- 16 times. But this is very unprecedented. So the numbers
- 17 will increase. And flu immunization should remain of
- 18 great importance.
- 19 And just to finish off by saying we're really
- 20 pleased the COVID-19 pandemic -- it didn't
- 21 significantly impact vaccine supply for the 2020-21

- 1 season. And the increased demand was met successfully,
- 2 especially in the U.S. with the greater than 10 percent
- 3 demand met. We did resolve any small Nagoya Issues
- 4 ahead of time. And due to the amazing efforts of our
- 5 colleagues in the ERL and the high yield reassortant
- 6 labs, all of the seasonal candidate vaccine viruses and
- 7 reagents were available in time.
- 8 And we're all in this together, right? We're
- 9 all here to play our own part to ensure adequate supply
- 10 of the best possible vaccines to safeguard public
- 11 health and protect lives. So we're all in this race
- 12 together. And thank you very much for your attention.
- 13 I really appreciate it. Thank you.
- DR. HANA EL SAHLY: Thank you, Dr. Parker. We
- 15 will have time for a few questions. I see three
- 16 questions coming up. We will begin with Dr. Michael
- 17 Kurilla --
- 18 DR. MICHAEL KURILLA: Thank you.
- 19 DR. HANA EL SAHLY: -- questions for Dr.
- 20 Parker.
- 21 DR. MICHAEL KURILLA: And my camera is still

- 1 not working. Lauren, two questions, there's a
- 2 tremendous amount of pressure on vaccine manufacturing
- 3 right now for COVID. So what's going to be the impact
- 4 upon flu vaccines and not just manufacturing but fill,
- 5 finish vials, stoppers? In addition, there's concerns
- 6 about having enough syringes. How are you factoring
- 7 all this into the impact on flu -- the next seasonal
- 8 production?
- 9 The other question is do I understand you
- 10 correctly with regard to Nagoya that, if China had
- 11 elected, they could have said, "Nobody else could use
- 12 this sequence, and we will be the only people who will
- 13 make vaccines off of this sequence. We're not going to
- 14 let any -- we're not going to let the international
- 15 community participate?" Is that a real threat or a
- 16 risk from this that could have happened? We would have
- 17 had to have waited for a variant to arrive so we could
- 18 have said we had something different?
- 19 DR. LAUREN PARKER: Both excellent questions.
- 20 Yeah. I'll answer your first question first -- well,
- 21 as best as I can anyway. So things like the impact to

- 1 supply chain and actual physical components to the
- 2 vaccines that we need, all of that is -- and again, I'm
- 3 speaking for the industry, not for representatives.
- 4 I'm representing, in particular, my knowledge from what
- 5 is happening in the U.K. at the moment -- is that all
- 6 of that stuff is sort of lobbied and looked at from a
- 7 government level and a public health infrastructure
- 8 level to ensure that everything is available, whether
- 9 that means massively upping the manufacturing of
- 10 syringes, the vials, all that type of thing. I'm sorry
- 11 I can't be more specific about that one.
- 12 With regards to the Nagoya Protocol there,
- 13 there was a lot of work done up front by colleagues at
- 14 the WHO Collaborating Centers with viruses from China
- 15 and Hong Kong. And it's very clear now that we have a
- 16 system and a process in place, and we know how to deal
- 17 with those things. I honestly wouldn't like to comment
- 18 on whether or not it would have been a case of "No,
- 19 we're not going to let you use that. We're going to do
- 20 that."
- I just wouldn't like to comment on that at

- 1 all. And it would have just -- there -- a lot of
- 2 negotiations which has been done. But with regards to
- 3 risks and threats, I think that from a manufacturing
- 4 point of view Nagoya and ABS is one of the biggest that
- 5 we're facing.
- 6 DR. MICHAEL KURILLA: Thank you.
- 7 DR. HANA EL SAHLY: Dr. Cody Meissner.
- 8 DR. CODY MEISSNER: Yeah. I wonder if you
- 9 could comment on this? Over the past year, we've seen
- 10 such dramatic improvements in the technology of vaccine
- 11 development using adenovirus vectors, obviously, and
- 12 messenger RNA platforms. And they offer the potential
- 13 of much more rapid development of vaccines. Can you
- 14 comment on where you think this is going to go? Will
- 15 AstraZeneca -- will other companies begin to look at
- 16 these platforms as a source of providing influenza
- 17 vaccines?
- 18 DR. LAUREN PARKER: Sure. I think -- well,
- 19 before I answer, what I'll say is that I will be
- 20 answering this from probably more of an AstraZeneca
- 21 point of view because, obviously, I can speak for them

- 1 on this. But I do think that -- I don't like to say
- 2 that there's been an upside to the pandemic at all.
- 3 But I do think it's been phenomenal to witness the
- 4 scientific and medical community coming together and
- 5 achieving what they did in 10 months to make a vaccine.
- 6 Like, our lockdown in the U.K. started about a
- 7 year ago, and I had my vaccine three weeks ago. It's
- 8 incredible. And I think with regards to what we
- 9 thought we knew about how vaccines needed to be made
- 10 and rigid -- our ideas have changed of them. And I do
- 11 think that demand will drive what is needed to be
- 12 supplied.
- 13 But the potential for some really amazing,
- 14 fast, new technologies are absolutely there. And I
- 15 won't be surprised to see AZ and my other industry
- 16 colleagues really get their teeth into this as well.
- 17 Because this is something that will help us in the
- 18 event of an influenza pandemic. Using eggs as a
- 19 platform to make our rapid response pandemic monovalent
- 20 is so problematic. If you have a big cell culture
- 21 platform or a plug and play mRNA or adenovirus vector

- 1 platform, then absolutely it's the quickest way to
- 2 respond. So I think we will -- I'm hoping that we will
- 3 see some really exciting moves forward in the vaccine
- 4 industry over the next sort of 5 to 10 years.
- 5 DR. HANA EL SAHLY: Okay. Thank you for this
- 6 hopeful note. I think on this hopeful note we will end
- 7 the morning session.
- 8 DR. LAUREN PARKER: Thank you.
- 9 DR. HANA EL SAHLY: Thank you, Dr. Parker.
- 10 Next on the agenda is our lunch break, 45 minutes. So
- 11 it's a little before 1:00 p.m. Eastern. So we will
- 12 reconvene at 1:45 Eastern. Thank you all.
- 13 [LUNCH]
- 14 OPEN PUBLIC HEARING

15

- 16 MR. MICHAEL KAWCZYNSKI: All right. Welcome
- 17 back to the 165th VRBPAC meeting. I'm Mike Kawczynski,
- 18 and we will get started with the last portion of
- 19 today's event. I'd like to hand it back over to Dr. El
- 20 Sahly. Dr. El Sahly, take it away.
- 21 DR. HANA EL SAHLY: Thank you, Mike. So the

- 1 next item in our agenda is the Open Public Hearing.
- 2 There were no formal requests for Open Public Hearing
- 3 session for today, and we will be moving straight into
- 4 the Committee discussion and recommendations and vote.

5

6 COMMITTEE DISCUSSION, RECOMMENDATION, AND VOTE

7

- 8 DR. HANA EL SAHLY: For this year, it looks
- 9 like there will be changes to two out of the three
- 10 subtypes: H1N1, H3N2 -- moving to Victoria/Wisconsin
- 11 for H1N1 and to Cambodia for H3N2. Despite low
- 12 circulation during the pandemic, it seems that these
- 13 two strains will minimize the risks as Dr. Wentworth
- 14 indicated of having a larger section of our population
- 15 being not immune to what may be circulating.
- 16 I like that from a statistical model because
- 17 we vaccinated one year against, you know, a potential
- 18 two strains for A, and now we're going with two others,
- 19 so a sort of hedge-your-bet kind of approach given the
- 20 uncertainty around the circulation. Having said that,
- 21 we're going to now move into the discussion of these

- 1 items, and, as always, please raise your hand in the
- 2 Adobe function so we can begin taking Q&A.
- 3 MR. MICHAEL KAWCZYNSKI: So again, we are in
- 4 our Committee discussion, so again, to our members, top
- 5 of the screen, go ahead and click on your hand if you'd
- 6 like to ask any questions or open up for debate. There
- 7 we go.
- 8 DR. HANA EL SAHLY: All right. Dr. Spearman.
- 9 DR. PAUL SPEARMAN: I would start by saying I
- 10 thought the explanations from our experts who were
- 11 participating in the WHO meeting and described the
- 12 changes made perfect sense. That's all I have to say.
- DR. HANA EL SAHLY: All right. Thank you, Dr.
- 14 Spearman. Any comments from or questions from our
- 15 group? I think we still have Dr. Wentworth with us, so
- 16 he can potentially clarify or answer more questions.
- 17 Dr. Hayley Gans.
- 18 DR. HAYLEY GANS: Thank you. I just wanted to
- 19 say that I echo what Paul said that I thought the
- 20 explanations were excellent. I mean, the surveillance
- 21 even in a year where we struggled to get strains was

- 1 excellent and provided us with a lot of information.
- 2 And, as you said, this is just the risk assessment, so
- 3 we can't predict the future. We can only sort of
- 4 surmise what might be the best protective correlates
- 5 (inaudible) or protection against our population.
- 6 The only thing that did seem to be missing --
- 7 and it just goes out to our partners -- is the idea of
- 8 how vaccination coverage reflects any of the
- 9 surveillance that we do. Or do we pick strains that
- 10 maybe wouldn't circulate in areas that actually have
- 11 better vaccine coverage or sort of picking things that
- 12 maybe aren't the risks that we should be looking at?
- 13 That would be my only feedback, and I feel like the
- 14 changes that were recommended are actually very well
- 15 founded.
- 16 DR. HANA EL SAHLY: Thank you. Dr. Meissner.
- 17 Dr. Meissner, you have a question?
- 18 DR. CODY MEISSNER: Yes. It just takes me a
- 19 minute. Sorry. I agree with both Dr. Gans and -- that
- 20 the presentation was excellent. I guess, I'll only --
- 21 my only comment is that I had hoped at this point we

- 1 would have some information about the relative efficacy
- 2 of the adjuvanted vaccines versus the high dose
- 3 vaccines versus cell-based or egg-based vaccines. But,
- 4 obviously, that's not available because -- it's nice
- 5 that there wasn't much disease, but it doesn't help us
- 6 in answering any of those questions.
- 7 I guess the one question I have that someone
- 8 may know here is how much trivalent vaccine is going to
- 9 be available this season? It was a very small percent
- 10 last year, and I assume based on the way that this
- 11 discussion's been presented that there will be some
- 12 trivalent vaccine this year. Over.
- 13 DR. HANA EL SAHLY: I don't know if someone
- 14 from CBER may have the breakdown by -- between
- 15 trivalent and quadrivalent. It looks like quadrivalent
- 16 is winning the race, but...
- 17 DR. JERRY WEIR: Hmm. Oh, hi, Dr. El Sahly
- 18 and Dr. Meissner. This is Jerry. Actually, I don't
- 19 have the breakdown either. I think you're right. In
- 20 the U.S., it is now predominately quadrivalent, and I
- 21 actually don't know the numbers of who -- which

- 1 manufacturers are still producing trivalent or how
- 2 much. I don't know if our industry rep might know.
- 3 There are other areas in the world where
- 4 trivalent is still fairly common, though. But in the
- 5 U.S., the quadrivalent has really sort of taken over
- 6 the market. Thanks.
- 7 DR. HANA EL SAHLY: I have a question to Dr.
- 8 Wentworth. Dr. Wentworth, maybe I'm wrong on that one,
- 9 but it seems that every year the Iowa strain is an
- 10 outlier in terms of antigenicity. It's presented in
- 11 tables, but it's not making its way into the pool of
- 12 predominant strains. Am I reading that correctly?
- 13 DR. DAVID WENTWORTH: Yeah. Do you recall
- 14 which Iowa it was? One good thing about Iowa is
- 15 they're one of our really good state public health lab
- 16 partners like Wisconsin and Minnesota.
- 17 DR. HANA EL SAHLY: Oh, okay. I think it's
- 18 under H3N2. Is that true? It's always in that table
- 19 on the end.
- 20 DR. DAVID WENTWORTH: Yeah, I mean, I could --
- 21 you're probably have to pull it up to address your

- 1 question. If it's been in previous ones, it is an
- 2 outlier that we selected on purpose. So we do select
- 3 outliers for two reasons. One, they could be an
- 4 antigenic variant that takes off, and we want to
- 5 understand that. And it's also good to show that your
- 6 serology panel is picking up differences. You know
- 7 what I mean?
- 8 DR. HANA EL SAHLY: Mm-hmm.
- 9 DR. DAVID WENTWORTH: So sometimes like for
- 10 example B/Yamagata this year -- I didn't show you
- 11 data, but we picked a very strange outlier for our
- 12 serology because all the other viruses reacted very
- 13 well with the human sera. And it's hard to tell if,
- 14 you know, you're really measuring anything. I could --
- 15 if I could look at that tree again, I can tell you --
- 16 let me just see if I can pull it up real quick. You
- 17 probably deserve a better answer.
- DR. HANA EL SAHLY: So it's a quasi control is
- 19 what you're saying.
- 20 DR. DAVID WENTWORTH: Yeah. Sometimes we have
- 21 -- like I said, Iowa's pretty popular. I think there

- 1 was a -- Iowa/6 is in co-line with B, and that's one of
- 2 our outliers there, but it's an older vaccine virus.
- 3 So that's -- it's only a double deletion virus, and
- 4 then for the H3 -- see if I can find that one.
- 5 DR. STEVEN PERGAM: And Dr. El -- and, Dr. El
- 6 Sahly, this is Steve Pergam. I think I noticed as well
- 7 on the FluNet that Iowa had -- was the only state that
- 8 actually had high levels of flu this year, which was
- 9 sort of interesting as a side note.
- 10 DR. DAVID WENTWORTH: So actually, our H3
- 11 outlier, we did have an Iowa/60. That's an older
- 12 virus. Okay. So that should have showed pretty good
- 13 reactivity in a human sera, which I'm pretty confident
- 14 it did. But the other one that could be similar to
- 15 that one is Pennsylvania/1026, and that one did have
- 16 this glycosylation site. It was lower in the human
- 17 serology, but it's also -- it's very closely related to
- 18 the current vaccine. And we didn't see any viruses
- 19 from that particular lineage or sub lineage or
- 20 subclade, however you want to define it, since about
- 21 March of last year.

- So, you know, that one, it just -- you never
- 2 know maybe it's lurking somewhere, and it does have an
- 3 advantage with the human sera, but we have no
- 4 representatives of it from that group. We did make
- 5 candidate vaccine viruses for that group, though. So
- 6 we were prepared for that group. It just wasn't -- it
- 7 didn't rise to the level of being nominated.
- 8 DR. HANA EL SAHLY: All right. Thank you for
- 9 clarifying. Any of my colleagues with questions?
- 10 Looks like Dr. Meissner has a question.
- DR. CODY MEISSNER: Yes, thank you, Hana. One
- 12 of the issues, I guess, that we all think about is
- 13 whether one vaccine is more effective than others, and
- 14 we really -- I don't know think there are sufficient
- 15 data to address that question. But one question I'd
- 16 like to ask Dr. Wentworth -- and I'm not sure I
- 17 understood your -- all of your fantastic presentations.
- 18 But, for example, on Slide 19 which shows human post-
- 19 vaccination sera analysis, you showed one for H1N1 and
- 20 H3N2. And it showed the relative GMPs to cell-
- 21 propagated vaccine for the different clades. And am I

- 1 reading it correctly? If I look at the bottom line
- 2 which says, for individual 65 years or older who got
- 3 the high dose vaccine, there was not any clear evidence
- 4 of an advantage of the high dose relative to the other
- 5 vaccines. Is that a correct interpretation?
- 6 DR. DAVID WENTWORTH: I think in this
- 7 particular -- this isn't a good study to look at the
- 8 relative improvement from the high dose. I think, when
- 9 you look at the serology, the high dose is improving
- 10 things. And I don't know if there's a vaccine efficacy
- 11 study like -- as you mentioned, these are clearly on
- 12 everybody's mind, and I'm -- I know we're trying to do
- 13 some.
- 14 When you compare elderly with -- in Japan
- 15 versus elderly in the U.S., it's not a fair comparison.
- 16 The Japanese sera always has a lower titer to start
- 17 with, so you can see here in that particular table like
- 18 you're looking at it, the Japanese sera in the elderly
- 19 -- and they do have quite a few over 65, 127 at
- 20 baseline, against the base 5A1 that they were immunized
- 21 with. Whereas with our elderly, their baseline was

- 1 394, right?
- 2 And I think maybe the bubble chart below is a
- 3 better one. So the bubble chart on the next Slide 20 -
- 4 and just so you're -- I didn't go through this
- 5 probably well enough. It's a new chart we haven't
- 6 shown before, but the sizes of bubble indicate the
- 7 people -- the number of subjects that were at that
- 8 particular titer, right? And so, if we compare the
- 9 U.S.A. high dose versus the 50- to 64-year-old, which
- 10 typically react better than elderly, right -- so that's
- 11 the -- in the bubble chart, they're the ones right
- 12 above and below each other.
- DR. CODY MEISSNER: Yes.
- DR. DAVID WENTWORTH: As you see they're both
- 15 starting off, you know, pretty low, 25 for the 50- to
- 16 64-year-olds and 18 for the elderly, and they -- this
- 17 elderly jumps up -- the 65 and older has 394 as a
- 18 median instead of 171 for basically younger folks with
- 19 the standard dose. So it's not a direct comparison of
- 20 the age groups, but I think it does illustrate that in
- 21 the immune response, the high dose is having a bit of

- 1 an impact. And we'll have to try to tease that out
- 2 some more ourselves at the CDC and maybe with
- 3 colleagues elsewhere and see if we can publish
- 4 something on that just from the immunological
- 5 standpoint. And then, maybe that would also work with
- 6 vaccine efficacy studies later and be consistent or
- 7 not, you know. We'll see what happens in vaccine
- 8 effectiveness studies, I should say.
- 9 But anyway, I partly included this because we
- 10 always have such interest in the human immune response,
- 11 and I hope it's useful to the Committee to have this
- 12 more detailed data than just the statistical analysis,
- 13 which tries to sum up a lot of data from different
- 14 people. And of course, some people react, you know,
- 15 quite well to the vaccine, and others don't have a
- 16 strong reaction. And that's -- you know, I don't have
- 17 any explanations for that.
- 18 DR. CODY MEISSNER: Thanks. Just --
- 19 DR. DAVID WENTWORTH: But I'll check. I think
- 20 I have that high dose in a couple of these bubble
- 21 charts, though.

- DR. CODY MEISSNER: Yes. Yeah. No, it's very
- 2 interesting the way you've broken down the serologies,
- 3 so thank you because that's a terrific amount of work.
- 4 DR. DAVID WENTWORTH: Thank you.
- 5 DR. HANA EL SAHLY: In terms of feedback, that
- 6 slide where you have the reactivity patterns of the
- 7 antisera on the cartography was also very informative,
- 8 so thank you for that, too. Dr. Weir has his hand up
- 9 for a question.
- 10 DR. JERRY WEIR: Yeah, I just wanted to follow
- 11 up on that question just a little bit. It is true, Dr.
- 12 Meissner, that there are not very many head-to-head
- 13 comparisons of vaccines, but, in the case of the high
- 14 dose, I remind you that that is one that we have actual
- 15 clinical efficacy of the high does versus the standard
- 16 dose from the same manufacturer. So that was shown to
- 17 be more efficacious than the standard dose.
- 18 And I'm pretty sure that there have been
- 19 effectiveness studies in subsequent years that also
- 20 backed up that data. So that is one -- that is one
- 21 vaccine for which we do have pretty good data that it

- 1 is more effective than the standard dose from the same
- 2 manufacturer.
- 3 DR. CODY MEISSNER: Thank you. Thank you for
- 4 that. Am I still on?
- 5 DR. HANA EL SAHLY: We can hear you.
- 6 DR. CODY MEISSNER: Oh. Thank you. Yes.
- 7 Thank you, Dr. Weir, for that but as I remember, it was
- 8 a pretty small benefit from the high-dose vaccine
- 9 relative standard and probably not a sufficient basis
- 10 to recommend one vaccine over another. Although, if
- 11 you have equal choice, the high dose -- you're in an
- 12 older age -- the high dose vaccine may make sense, but
- 13 is that a correct interpretation of that data?
- 14 DR. JERRY WEIR: I seem to remember it a
- 15 little differently. This was -- the high dose was
- 16 first -- if I remember right, the high dose was first
- 17 tested -- I think it was through accelerated approval
- 18 and shown to have a much better, significantly higher
- 19 serological response, and then the follow-up efficacy
- 20 study showed that or demonstrated it. So I think it
- 21 was fairly compelling.

- 1 DR. CODY MEISSNER: Okay. And so then, I
- 2 guess, it's not FDA's responsibility to mention
- 3 vaccines, but I guess a question then becomes at what
- 4 point does ACIP recognize or acknowledge one vaccine's
- 5 preference over another in a certain age group? That's
- 6 just a thought, not a question, unless, Hana, you want
- 7 to comment on that?
- 8 DR. HANA EL SAHLY: I think that the ACIP does
- 9 make differential recommendations for different age
- 10 groups. They've always done that, and they reviewed
- 11 the data every year. The most recent change we've seen
- 12 is with the LAIVs, you know, being preferential than
- 13 not being preferential, so they do weigh in on the
- 14 matter on a regular basis.
- 15 **DR. CODY MEISSNER:** Yeah, but not on the high
- 16 dose, I don't think.
- 17 DR. HANA EL SAHLY: I think the high dose as
- 18 well, but I'll look it up and get back with you on that
- 19 one.
- 20 DR. JERRY WEIR: Yeah, I'm sorry. I can't --
- 21 DR. DAVID WENTWORTH: Yeah, I can't remember.

- 1 DR. JERRY WEIR: I can't remember either.
- DR. HANA EL SAHLY: But I want to say it is,
- 3 but I'll get back to you on that one. Dr. Offit has a
- 4 question.
- 5 DR. PAUL OFFIT: Right. Thanks. So it is --
- 6 just to get back to what Lisa Grohskopf had alluded to
- 7 because I just want one more piece of information. It
- 8 is striking how little respiratory virus illness we see
- 9 this year. I mean, we -- you know, not just flu.
- 10 Certainly in our hospital, respiratory syncytial virus,
- 11 human coronaviruses, we don't see it.
- And so my question is, obviously, it's likely
- 13 to be multifactorial. But, if you look at societies
- 14 like, say, Japan that do mask in the winter months but
- 15 don't restrict travel or don't close schools or don't
- 16 really even socially distance, do those societies that
- 17 choose to wear a mask in the winter -- do they have
- 18 lesser rates of respiratory illnesses like flu and
- 19 others? Do we know that?
- DR. HANA EL SAHLY: I'm not familiar with any
- 21 data around this matter, but I must say whatever

- 1 measure used to be taken in previous years doesn't even
- 2 begin to compare to the measures we've taken in the
- 3 last year.
- 4 DR. PAUL OFFIT: It's remarkable. This is the
- 5 best vaccine ever. You know, I mean, it's (inaudible).
- 6 DR. HANA EL SAHLY: We cannot make people mask
- 7 around the seasonal flu, Paul.
- 8 DR. PAUL OFFIT: No. So there are no data --
- 9 not data on those societies -- South Korea, Japan --
- 10 where they tend to wear masks for it. We don't know
- 11 that. Is that true?
- 12 DR. HANA EL SAHLY: I don't know that. Are
- 13 any of our colleagues familiar with any data?
- DR. PAUL OFFIT: Dr. Wentworth, do you -- any
- 15 information on this?
- 16 DR. DAVID WENTWORTH: I don't have -- I don't
- 17 know that answer either. I'm sorry I can't help you.
- 18 The only thing I know that kept circulating this --
- 19 from respiratory viruses from my interactions with
- 20 public health labs have been rhinoviruses. So
- 21 rhinoviruses -- so that's kind of telling that the

- 1 system was working, and they were detecting things to
- 2 me. But they weren't detecting, as was already
- 3 mentioned, respiratory syncytial virus, coronaviruses
- 4 of other -- you know, like 229E or OC43 or influenza
- 5 viruses A or B.
- 6 So I think there are studies -- you know, I
- 7 didn't want to get into all this. Certainly, it's not
- 8 part of my talk, but there are also studies about viral
- 9 interference and the role that that can play. Clearly
- 10 influenza viruses interfere with each other, and that
- 11 makes a lot of sense because you have a lot of common
- 12 epitopes across all the internal proteins, and you
- 13 emulate interferon and a lot of cross protective non-
- 14 neutralizing antibodies.
- But I don't know -- you know, I think as Dr.
- 16 El Sahly pointed out, it's just too hard to tell with
- 17 so many factors at the same time, and I don't know of
- 18 studies specific to countries that mask more
- 19 frequently, you know, if it would be different there.
- 20 You know, they have high density populations, so maybe
- 21 if they weren't masking, their flu seasons would be

- 1 even worse. But I don't know the answer, sorry.
- DR. PAUL OFFIT: All right. Thank you.
- 3 DR. HANA EL SAHLY: That's interesting, David,
- 4 that you are also seeing that the rhinovirus cases a
- 5 bit more than the others because that's been the
- 6 experience here as well. Okay. Dr. David Kim has a
- 7 question.
- 8 DR. DAVID KIM: I'm going to step back from
- 9 influenza types and subtypes and ask a broader question
- 10 of Drs. Wentworth and Weir. You know, the number of
- 11 specimens that were tested for from the current or the
- 12 past influenza season decreased by an order of
- 13 magnitude. So we're talking from thousands of
- 14 specimens being available to mere hundreds, and the WHO
- 15 consulting meeting that Dr. Wentworth -- that you
- 16 presided over, surely, that must have figured into the
- 17 discussion that you had. You had, relatively speaking,
- 18 a fewer number of specimens from which strain
- 19 discussions could take place. And out of that
- 20 discussion, were there concerns that were put forth by
- 21 any of the consulting membership that the much smaller

- 1 number of specimens from which you could derive
- 2 information was an issue?
- 3 DR. DAVID WENTWORTH: Hi. Yeah. I'm not sure
- 4 if you can see me. All of a sudden, my camera seems to
- 5 -- it doesn't show myself, but I hope you can hear me.
- 6 Yeah, of course, we discussed that at pretty
- 7 significant lengths because the lack of viruses,
- 8 particularly in certain geographic regions where all of
- 9 a sudden you have no information, really does, you
- 10 know, limit your ability to understand what the breadth
- 11 of variation that's continuing to circulate is.
- I mean, one of the prevailing ideas is that,
- 13 with so many viruses from some of the certain clades
- 14 circulating before the COVID-19 pandemic, that we're
- 15 pretty fit in our population. It's almost guaranteed
- 16 that some of those will make it through the COVID
- 17 bottleneck, and those would be viruses quite similar to
- 18 what was circulating, say, in the spring of 2020,
- 19 right? And then, they would almost reset and start
- 20 from there.
- 21 Another, of course, hypothesis is -- or a

- 1 train of thought is that the ones making it through
- 2 this bottleneck are quite advanced and divergent, and
- 3 that could be why we were seeing some of the unique
- 4 influenza B viruses that were really low proportions
- 5 before that I commented on that 150K group. And also,
- 6 you know, certain countries still had a pretty strong
- 7 flu season in Asia, and Cambodia was one of them. And
- 8 there we saw, you know, some evolution of the H3, but
- 9 not, like, dramatic. You know, the Bangladesh have
- 10 more substitutions than those in Cambodia.
- 11 So certainly, it entered the discussion, and,
- 12 as I tried to point out, evaluating human sera, you
- 13 know, is always important, but this season more so
- 14 because, with that limited data set, you really want to
- 15 understand which of these viruses that are circulating,
- 16 you know, escapes that immunity the most from the
- 17 previous vaccine or previous infections. And so I
- 18 think that, you know, that's about all I can say about
- 19 it. It does raise the uncertainty.
- 20 The other thing I just -- I think I would
- 21 point out is, in the past, you know, flu probably

- 1 hasn't changed its dynamics much, but we certainly
- 2 didn't have as much characterization of viruses going
- 3 on in the past, right? We just didn't have the depth
- 4 of surveillance that we do now. We didn't have the
- 5 NGS, the next generation sequencing. We didn't have a
- 6 variety of things.
- 7 And the vaccine strains changed less
- 8 frequently, right? It wasn't until they were really
- 9 perceived as a large antigenic drift -- that was the
- 10 big driver of change. And now it's this combination of
- 11 genetics and human serology in addition to some
- 12 antigenic drift information from ferrets that help
- 13 derive that strain selection.
- So I think the conservative approach is to not
- 15 change, and then, when -- the change would be when you
- 16 have a strong feeling that there's a greater risk by
- 17 this new group of viruses than there would be if, you
- 18 know, we stuck with the same vaccine. And that's
- 19 really, I think, about what I could say to comment on
- 20 that. But certainly, everybody is well aware, and
- 21 that's why I really have to thank all our partners

- 1 because they really went out and looked for influenza,
- 2 you know, to help support this activity because they
- 3 had to find the few positive stuff and get them into
- 4 the right places, get them shipped to right
- 5 laboratories.
- 6 Normally, that just occurs so easily. You
- 7 don't have to work with epidemiologists on the ground
- 8 in Asia to try to move things to, you know, a central,
- 9 national influenza center or anything like that. They
- 10 just kind of appear. So there was effort to produce
- 11 the viruses, even though it was the limit ones that
- 12 were available.
- 13 DR. DAVID KIM: I must say that discussion
- 14 must have been painful at times because of the lack of
- 15 sources from which you could have a robust discussion.
- 16 **DR. DAVID WENTWORTH:** Yeah.
- 17 **DR. DAVID KIM:** Congratulations all the same.
- 18 DR. DAVID WENTWORTH: Thank you.
- 19 DR. HANA EL SAHLY: Good point. I do not see
- 20 any members with questions raising their hands in the
- 21 Adobe. That probably ends the discussion portion of

- 1 our meeting. I turn it now over to Kathleen Hayes,
- 2 DFO, who will review the voting process and conduct the
- 3 vote for today.
- 4 MS. KATHLEEN HAYES: Thank you, Dr. El Sahly.
- 5 So, for the voting portion of today's meeting, our
- 6 members and temporary voting members, as you'll see on
- 7 the side coming up, excluding the industry
- 8 representative, will be voting in today's meeting. In
- 9 regard to the process, Dr. El Sahly will read the final
- 10 question aloud for the record, and afterwards all
- 11 members and temporary voting members will cast their
- 12 vote by selecting yes, no, or abstain.
- 13 You'll have two minutes to cast your vote
- 14 after the question is read. Once all the votes have
- 15 been placed, we'll broadcast the results and then read
- 16 the votes aloud for the record. And just please note
- 17 that once you've cast your vote, you can change your
- 18 vote within the two-minute timeframe, but once the poll
- 19 has closed, all votes will be considered final.
- 20 Does anybody have any questions about this
- 21 before we get started? Okay. We can go to the first

- 1 voting slide, and, Dr. El Sahly, if you could please
- 2 read the question.
- 3 DR. HANA EL SAHLY: The voting Question 1 for
- 4 today: for the influenza A(H1N1) component of the 2021-
- 5 2022 influenza virus vaccines in the U.S., does the
- 6 Committee recommend an A/Victoria/2570/2019(H1N1)pdm09-
- 7 like virus for egg-based vaccines, an
- 8 A/Wisconsin/588/2019(H1N1)pdm09-like virus for cell- or
- 9 recombinant-based vaccine? Please vote. Thank you.
- 10 MS. KATHLEEN HAYES: Thank you. So you'll
- 11 have two minutes to go ahead and cast your vote.
- 12 (pause)
- We have about a minute remaining.
- 14 (pause)
- 15 It looks like all the votes are actually in,
- 16 so I think we can go ahead and end the pole and
- 17 broadcast the results. Excuse me.
- I will now read the votes aloud for the
- 19 record. So we have Dr. Spearman voted yes. Dr. Cohn
- 20 voted yes. Dr. Meissner voted yes. Dr. Levine voted
- 21 yes.

- 1 Dr. Shane voted yes. Dr. Pergam voted yes.
- 2 Dr. Kim voted yes. Dr. Chatterjee voted yes. Dr. Gans
- 3 voted yes. Dr. Portnoy voted yes. Dr. Janes voted
- 4 yes. Dr. Swamy voted yes. Dr. El Sahly voted yes.
- 5 Dr. Kurilla voted yes. Dr. Offit voted yes. Colonel
- 6 Wiesen voted yes.
- 7 And that concludes the vote for Question
- 8 Number 1, so we can go ahead and proceed to Question
- 9 Number 2. Dr. El Sahly, if you could please read the
- 10 question.
- 11 DR. HANA EL SAHLY: Okay.
- 12 MS. KATHLEEN HAYES: Oh, thank you.
- 13 DR. HANA EL SAHLY: Voting Question 2: For the
- 14 influenza A(H3N2) component of the 2021-2022 influenza
- 15 virus vaccine in the U.S., does the Committee recommend
- 16 an A/Cambodia/e0826360/2020(H3N2)-like virus? Please
- 17 vote.
- 18 MS. KATHLEEN HAYES: Okay. And you'll have
- 19 two minutes unless we get all the votes in early.
- 20 (pause)
- Okay. Looks like all the votes are in. You

- 1 all vote really quickly. So we can go ahead and close
- 2 the poll. And I will read these votes aloud. So Dr.
- 3 Spearman, yes; Dr. Janes, yes; Dr. Meissner, yes; Dr.
- 4 Levine, yes; Dr. Shane, yes; Dr. Pergam, yes; Dr. Kim,
- 5 yes; Dr. Chatterjee, yes; Dr. Gans, yes; Dr. Portnoy,
- 6 yes; Colonel Wiesen, yes; Dr. Swamy, yes; Dr. El Sahly,
- 7 yes; Dr. Kurilla, yes; Dr. Offit, yes; Dr. Cohn, yes.
- 8 And that concludes the vote for Question Number 2, so
- 9 we can proceed to Question Number 3.
- 10 DR. HANA EL SAHLY: Question Number 3: For
- 11 the influenza B component of the 2021-2022 trivalent
- 12 and quadrivalent virus vaccines in the U.S., does the
- 13 Committee recommend inclusion of a
- 14 B/Washington/02/2019-like virus (B/Victoria lineage)?
- 15 Please vote.
- (pause)
- 17 MS. KATHLEEN HAYES: Okay. All of our votes
- 18 are in for Question Number 3. Dr. Spearman, yes; Dr.
- 19 Cohn, yes; Dr. Meissner, yes; Dr. Levine, yes; Dr.
- 20 Shane, yes; Dr. Pergam, yes; Dr. Kim, yes; Dr.
- 21 Chatterjee, yes; Dr. Gans, yes; Dr. Portnoy, yes;

- 1 Colonel Wiesen, yes; Dr. Swamy, yes; Dr. El Sahly, yes;
- 2 Dr. Kurilla, yes; Dr. Offit, yes; Dr. Janes, yes. And
- 3 that concludes the results for our voting Question
- 4 Number 3. And we can proceed to our last voting
- 5 question, Number 4.
- 6 DR. HANA EL SAHLY: Question 4: For
- 7 quadrivalent 2021-2022 influenza vaccines in the U.S.,
- 8 does the Committee recommend inclusion of a
- 9 B/Phuket/3073/2013-like virus (B/Yamagata lineage) as
- 10 the second influenza B strain in the vaccine? Please
- 11 vote.
- 12 (pause)
- 13 MS. KATHLEEN HAYES: Okay. And all of our
- 14 votes are in for Question Number 4. Dr. Spearman, yes;
- 15 Colonel Wiesen, yes; Dr. Meissner, yes; Dr. Levine,
- 16 yes; Dr. Shane, yes; Dr. Pergam, yes; Dr. Kim, yes; Dr.
- 17 Chatterjee, yes; Dr. Gans, yes; Dr. Portnoy, yes; Dr.
- 18 Janes, yes; Dr. Swamy, yes; Dr. El Sahly, yes; Dr.
- 19 Kurilla, yes; Dr. Offit, yes; Dr. Cohn, yes. And that
- 20 concludes the voting portion of today's meeting.
- 21 So thank you very much. I will hand it back

- 1 over to Dr. El Sahly if anybody would like to give
- 2 their rationale for today's vote. Thank you.
- 3 DR. HANA EL SAHLY: So we will go over the
- 4 virtual table and ask the Committee members for any
- 5 final thoughts. Michael from audio visual, I don't see
- 6 the names on the screen anymore. What can I do?
- 7 MR. MICHAEL KAWCZYNSKI: There you go, Dr. El
- 8 Sahly.
- 9 DR. HANA EL SAHLY: All right. Now, I can see
- 10 them. Okay. So we will go around the table asking our
- 11 Committee members for any final thoughts or any
- 12 explanations of this vote if they wish to give one.
- 13 Dr. Wiesen. Unmute it, Dr. Wiesen.
- 14 COL. ANDREW WIESEN: Sorry. I did the double
- 15 mute. Sorry. My bad. Yeah, I didn't know you were
- 16 going to come to me first. It's exciting.
- No, I think the presentations are all straight
- 18 forward. The vote was, I think, a relatively easy one.
- 19 The only thing I would want to mention, number one, is
- 20 I've done this for, I think, four years. I think this
- 21 may be my fifth year, but I am retiring this summer.

- 1 So there will be someone else from DoD to be the
- 2 temporary member after me.
- And I will also remind the folks, I know there
- 4 were several questions about studies about the
- 5 differences between vaccines, and the DoD is doing a
- 6 study looking at the difference between recombinant
- 7 egg-based and -- I'm forgetting the third types now.
- 8 Anyway, but, of course, that study got -- there weren't
- 9 enough cases the first year, which was two years ago,
- 10 and there certainly weren't enough cases this year for
- 11 them to get meaningful recruitment into the study. So
- 12 it has been delayed. But the intent is to see if they
- 13 can come up with a relative, at least, estimate of
- 14 whether there's a significant difference in how any of
- 15 those vaccines work. So there will be more to follow
- 16 from my successor, but at least, we realize it's an
- 17 important question. we just haven't been able to get
- 18 to an answer on it yet.
- 19 DR. HANA EL SAHLY: That would be great to see
- 20 the data from a well conducted study on the matter.
- 21 Thank you, Dr. Wiesen. We will miss you.

- 1 COL. ANDREW WIESEN: I'll miss this, too.
- 2 Bye.
- 3 DR. HANA EL SAHLY: Dr. Kim. Dr. David Kim.
- 4 Okay. We will...
- 5 **DR. DAVID KIM:** Oh, geez. I did not raise my
- 6 hand.
- 7 DR. HANA EL SAHLY: No, it's for any final
- 8 thoughts or comments, if you have any, pertaining to
- 9 the vote.
- 10 **DR. DAVID KIM:** I would like to congratulate
- 11 the Committee and the presenters for a well-thought
- 12 out, comprehensive discussion and really making a
- 13 pretty straightforward case for a relatively easy vote.
- 14 I realize in preparation for today's meeting the
- 15 presenters' ability to assemble the necessary
- 16 information must have been so much more difficult this
- 17 year compared to the years past. And for all the extra
- 18 effort that went into the WHO's meeting last month as
- 19 well as for today's meeting, I'd like to thank the
- 20 presenters and congratulate them for really a terrific
- 21 job.

- DR. HANA EL SAHLY: All right. Thank you, Dr.
- 2 Kim. Dr. Cohn. Amanda Cohn.
- 3 CAPT. AMANDA COHN: Hi, everyone. I just want
- 4 to tell the presenters thank you for all of their work
- 5 to put these together. I think this -- I know we all
- 6 said last flu season that it was really critical to get
- 7 vaccinated. As you could hear from the discussion
- 8 today, all of the unknowns are going to be even more
- 9 unknown what's going to happen next season, and so I
- 10 think, you know, ensuring people are vaccinated both
- 11 against flu and COVID is going to be really critical to
- 12 help get us through this year and next year's flu
- 13 season.
- I also want to just say that this is -- the
- 15 meeting last year, this was supposed to be my first
- 16 meeting, the flu meeting, and I didn't come last minute
- 17 because I was doing the COVID response. And it was the
- 18 only -- I didn't realize it was the only opportunity I
- 19 was going to have to meet all of you in person. So
- 20 it's good to see you all virtually, but it's now been -
- 21 this is our second spring flu meeting with the COVID

- 1 tint of it.
- DR. HANA EL SAHLY: There will be a post-COVID
- 3 year. No worries. Thank you, Dr. Cohn. Dr. Andrea
- 4 Shane. Please unmute, Dr. Shane.
- 5 DR. ANDREA SHANE: Okay. Thank you. Sorry.
- 6 Double muted. Thank you very much, Dr. El Sahly, and
- 7 thanks to the CDC and industry presenters for providing
- 8 a very nice perspective in making the decision for us
- 9 easy, so to speak. And the tremendous amount of data
- 10 based on the information that we have was very helpful
- 11 in helping us to think through the decision.
- I agree we're going to have lots of challenges
- 13 with trying to ensure that our children and parents and
- 14 others in society continue to take advantage of
- 15 receiving the influenza vaccine, but we have had a very
- 16 nice discussion in reaching what I think is a good
- 17 recommendation. So thank you very much.
- DR. HANA EL SAHLY: Thank you, Dr. Shane. Dr.
- 19 Chatterjee.
- DR. ARCHANA CHATTERJEE: Thanks, Dr. El Sahly.
- 21 Just a couple of quick comments to make with regard to

- 1 my vote, I would also like to thank all of the
- 2 presenters for sharing the vast amount of data that
- 3 they did, and my vote was based on the recommendations
- 4 that came from the experts really in this arena. I do
- 5 want to commend the people -- and this is not just the
- 6 presenters but everyone who is involved -- in remaining
- 7 focused on flu, which, you know, would have been easy
- 8 to lose our focus on during this pandemic time. But
- 9 this is our annual nemesis, and so it makes sense that
- 10 people have remained focused on this. We have limited
- 11 data, but what data we have do help us to make these
- 12 decisions.
- The second point I wanted to make was with
- 14 regard to the new technologies -- and I think it was
- 15 Dr. Offit that made reference to that -- that have
- 16 emerged -- new vaccine technologies that have emerged,
- 17 and this is really in exaltation to industry partners
- 18 to focus on how those can be harnessed to make better
- 19 influenza vaccines. Thank you.
- DR. HANA EL SAHLY: Thank you, Dr. Chatterjee.
- 21 Dr. Meissner.

- DR. CODY MEISSNER: Thank you, Dr. El Sahly.
- 2 And I too would like to thank folks from the CDC and
- 3 from CBER for their always clear and very helpful
- 4 presentations. I can only imagine how much work goes
- 5 into it.
- 6 This year is -- it's easier in one sense and
- 7 it's harder in another sense to try and anticipate
- 8 what's going to happen this fall. It's unlikely that
- 9 the influenza virus has mutated itself out of existence
- 10 as I first heard one of our speakers today, Dr.
- 11 Wentworth, say some time ago. And it's -- there may be
- 12 fatigue with nonpharmacologic interventions next fall,
- 13 and we may very well have variant strains of COVID-19
- 14 that are circulating as well as influenza. Hopefully,
- 15 that's not the case, and hopefully, the strains that
- 16 will be in the vaccine will in fact be helpful. Over.
- 17 DR. HANA EL SAHLY: Thank you, Dr. Meissner.
- 18 Dr. Geeta Swamy.
- 19 DR. GEETA SWAMY: Hi there. Thanks, everyone.
- 20 I don't have anything further to add other than to say
- 21 it will be interesting to see in the fall as research

- 1 gets forwarded if we are able to measure what
- 2 components of the pandemic prevention strategies may
- 3 actually still be helpful. I think it will be hard to
- 4 make this the best vaccine as Dr. Offit mentioned, but,
- 5 if we can do things about, you know, avoiding
- 6 interaction when individuals are still -- are
- 7 symptomatic with illness, and quite frankly a lot of
- 8 remote working is, I think, going to go forward in
- 9 settings where that's a possibility.
- 10 And I raise that because we may end up seeing
- 11 potential worsening disparities when we see incidents
- of other illnesses such as respiratory conditions that
- 13 may not be about mortality but other morbidity
- 14 situations. That will be interesting none the less.
- 15 Thank you.
- DR. HANA EL SAHLY: Thank you, Dr. Swamy. Dr.
- 17 Hayley Gans.
- DR. HAYLEY GANS: Thank you very much, Dr. El
- 19 Sahly. I just had a couple of thoughts. I, you know,
- 20 had mentioned before that I thought that the
- 21 presentations were outstanding. One of the issues that

- 1 I thought was really well articulated by Dr. Wentworth
- 2 is that each year that we meet -- and, again, I've only
- 3 done these a couple of times -- it does feel like the
- 4 Agencies are very responsive to some of the information
- 5 that we have wanted, and he was able to provide us with
- 6 new data sets that I thought were enhancing our ability
- 7 to really understand this. And I just really wanted to
- 8 say that we appreciate the responsiveness of the
- 9 individuals who have been working with us in trying to
- 10 give us information that we feel we need. As I
- 11 mentioned before, it would be really wonderful to
- 12 understand just a few other data points as I mentioned
- 13 previously.
- 14 The other issue that I think is very
- 15 important, we talk about vaccine efficacy, and we all
- 16 see -- and we've talked about how we look forward to
- 17 using some of the information that we've learned in the
- 18 pandemic. And I think we shouldn't lose sight of that.
- 19 And I was very grateful also for the industry talking
- 20 about these partnerships that are going to bring us
- 21 into the future, and we should really not revert back

- 1 to anything that we had done in the past.
- In terms of vaccine efficacy, I think it's
- 3 very important we talk about sort of this idea of not
- 4 getting ill or not being able to sterilize the world
- 5 with these. And that's really -- I think we're going
- 6 to have to start changing our expectations of vaccines.
- 7 I mean, the flu vaccine that's highly effective at
- 8 preventing severe disease and death and mortality as
- 9 well probably the correlate that we should look at for
- 10 at least the SARS-CoV-2 vaccines as well. And so I
- 11 think maybe looking at it through a different lens will
- 12 be really important.
- 13 And I look forward to seeing the data again
- 14 next year and maybe some new information about the
- 15 vaccines and the strains. Thank you.
- 16 DR. HANA EL SAHLY: Thank you. Dr. Holly
- 17 Janes.
- DR. HOLLY JANES: Thank you, Hana. I wanted
- 19 to also just echo my thanks for the speakers and really
- 20 a great -- you know, echo the appreciation for the
- 21 nuanced presentation in helping us wrestle with the

- 1 very limited information with which to make the
- 2 recommendations this year and the new analyses that
- 3 were presented in response to questions previously by
- 4 the Committee as well as just the efforts that are
- 5 clearly being made to expand the ways in which we look
- 6 at these data and recommendations. Thanks.
- 7 DR. HANA EL SAHLY: Dr. Portnoy.
- 8 DR. JAY PORTNOY: Thank you. Yeah, I want to
- 9 thank the Committee for inviting me to participate as
- 10 the consumer representative. This was my first time at
- 11 this type of committee.
- I thought it was very interesting as a
- 13 complement and a contrast to the COVID committee, which
- 14 I was on last week. Since that committee had a lot of
- 15 discussion of variance, my guess is that COVID will
- 16 require the same type of surveillance we saw with
- 17 influenza in the future to monitor surveillance, and an
- 18 annual vaccine will probably be necessary for those
- 19 variants.
- 20 And this type of meeting will probably be used
- 21 for COVID. Maybe they'll be combined. It'll be an

- 1 influenza/COVID committee meeting. It's hard to say.
- 2 I'll be interested to see whether the COVID and
- 3 influenza vaccines can be combined together into a
- 4 maybe a quint-avalent vaccine of some sort because
- 5 otherwise it's a lot of vaccines.
- I look forward to development of the new
- 7 platforms, mRNA adenovirus-based platforms, for
- 8 producing virus vaccines, perhaps even influenza
- 9 vaccine as we heard before. Since they were so
- 10 incredibly effective for treating COVID, I wonder if
- 11 the immunity and the effectiveness for influenza would
- 12 be enhanced by these new platforms. It may, in fact,
- 13 make it much easier to control the virus. But I look
- 14 forward to seeing results of this in the future. Thank
- 15 you very much.
- DR. HANA EL SAHLY: Thank you, Dr. Portnoy.
- 17 Dr. Kurilla.
- DR. MICHAEL KURILLA: Thank you, Hana. No, I
- 19 think overall this was a very satisfying meeting. It
- 20 is unfortunate that the amount of flu available for
- 21 analysis is much reduced in terms of vaccine --

- 1 potential vaccine selection, but it is a good thing
- 2 that we are seeing a great reduction in influenza
- 3 disease. I think the one thing that will have to be
- 4 very carefully examined going forward is our
- 5 surveillance given that there's a high likelihood that
- 6 COVID may end up -- this COVID may end up becoming
- 7 another one of the endemic strains.
- I think it probably should prompt us to think
- 9 about differences in terms of how we view what we
- 10 typically refer to as influenza-like illnesses, that
- 11 the combination of the two -- there may be a lot of
- 12 unrecognized coronavirus disease that we just haven't
- 13 been looking for before. So I think it will be a very
- 14 important to reevaluate how we do surveillance going
- 15 forward so we can accurately know the cases of flu
- 16 versus corona versus other human respiratory viruses
- 17 that are probably having an impact on the elderly and
- 18 others with comorbid conditions. Thank you.
- 19 DR. HANA EL SAHLY: Thank you, Dr. Kurilla.
- 20 Dr. Levine.
- 21 DR. MYRON LEVINE: Thank you. I would also

- 1 like to add my thanks and kudos to the presenters and
- 2 in particular to thank David Wentworth for the new type
- 3 of slide, the bubble slide, that he's produced that
- 4 have taken a very complex amount of data and taken us a
- 5 step further -- to easier to understand the
- 6 interrelationships. Thanks also to Kathleen Hayes and
- 7 to Mike handling the AV. For me, a technological
- 8 dinosaur, this is always a stress, and I appreciate
- 9 their help.
- To be honest, the major takeaway that I go
- 11 away with is the extraordinary fall in the number of
- 12 influenza isolates despite clearly a fair number of
- 13 specimens to be looked for. And I know from a number
- 14 of sources that influenza along with a test for COVID
- 15 are ongoing with many individuals for respiratory
- 16 infection. And that fact is titillating my brain.
- 17 It implies, though, if masks and social
- 18 distancing are contributing to that, why is that
- 19 appearing to be less effective with SARS-CoV-2? I
- 20 think maybe some interesting information may come from
- 21 the U.K. where with similar patterns of masking and of

- 1 social distancing a -- their so-called "U.K. variant,"
- 2 which wasn't associated with increased severity or not
- 3 greatly so but was clearly associated with increased
- 4 transmissibility, makes one wonder if there is a true
- 5 difference in the ability of these measures to
- 6 intervene against influenza versus against SARS-CoV-2.
- 7 And even looking at the major strain in the
- 8 U.S. and across the world of SARS-CoV-2 before the new
- 9 emerging variants concern appeared, it was this subtle,
- 10 you know, D614G mutation that affects transmissibility
- 11 that allowed that to take over. Maybe we need to get
- 12 super masks for people, and that could make a
- 13 difference. But I think that's going to come down to,
- 14 despite its possible effects, is getting populations to
- 15 use those potentially powerful tools during wintertime.
- 16 Thank you all.
- 17 DR. HANA EL SAHLY: Thank you, Dr. Levine.
- 18 Dr. Offit.
- 19 DR. PAUL OFFIT: Right. I don't have anything
- 20 to add other than what other people said to sort of I
- 21 guess make the point that we're lucky to have -- be

- 1 surrounded by the level of expertise that we're
- 2 surrounded by which makes our decisions much easier
- 3 here. So thanks again to our presenters. Thank you.
- 4 DR. HANA EL SAHLY: Thank you, Dr. Offit. Dr.
- 5 Spearman.
- 6 DR. PAUL SPEARMAN: Thank you, Hana. Yeah
- 7 I'll be brief. Thanks again to all the presenters and
- 8 to the organizers at CBER. I thought it was very well
- 9 presented, and it made our jobs easy.
- Two take aways for me, one is I think, sort of
- 11 paraphrasing, flu is unpredictable. We're predicting
- 12 the best we can or the experts who provided us all the
- 13 information to choose the right strains. Let's hope
- 14 that that works, but there is some unpredictability.
- The second thing really is to, as previously
- 16 mentioned, the remarkable lack of flu, the historical
- 17 lack of flu is amazing. And it's an opportunity to
- 18 learn what's really behind that, and like Dr. Meissner
- 19 said also RSV, no RSV season that we've seen. It's
- 20 just amazing, so let's figure it out. Is it all the
- 21 behavioral things and changes in behavior and masking

- 1 et cetera, or is there some biological part to it, too?
- 2 Thanks.
- 3 DR. HANA EL SAHLY: Thank you. Dr. Pergam.
- 4 DR. STEVEN PERGAM: Yeah. I really don't have
- 5 much to add to everybody else. I think I may be last,
- 6 so I'll try to make it brief.
- 7 I just would like to say I'm really going to
- 8 be interested in what happens this year with flu.
- 9 We've been talking about what has happened over the
- 10 last year, but going into this without a lot of
- 11 predictability but from the vaccine's perspective and
- 12 how social changes will be continued through the
- 13 upcoming year is going to be fascinating to see. And
- 14 at this meeting next year will be one of the most
- 15 intriguing for me as we start planning and looking back
- 16 at the year of what has happened to the flu. But
- 17 thanks, everybody, for their contributions again.
- 18 Great presentations by those who presented.
- 19 DR. HANA EL SAHLY: Thank you, Dr. Pergam.
- 20 I'm thankful for the presenters, for my colleagues, for
- 21 these thoughtful questions and deliberations. It was

- 1 at least gratifying to see that the uptake of flu and
- 2 the number of doses in the United States if anything
- 3 increased, which sort of was a silver -- quasi silver
- 4 lining in this past year in that our attention to other
- 5 public health measures continued. Given the data
- 6 presented on antiquenicity and the -- all circulations
- 7 of what we have, I think the proposed strains make
- 8 genealogic sense. And I want to thank the CDC for this
- 9 large body of data that they synthesized for us every
- 10 year in ever-improving fashion. And we'll wrap it up
- 11 for this session. I'll turn it over to Kathleen.

12

13 ADJOURN MEETING

14

- 15 MS. KATHLEEN HAYES: Thank you, Dr. El Sahly.
- 16 Before we close out, I just wanted to note for the
- 17 record that pertaining to the voting portion of today's
- 18 meeting that all four questions did have unanimous 16
- 19 out of 16 votes, so I just wanted to note that. But
- 20 outside of that, you know, I just want to thank
- 21 everybody for attending today. I know that lots of you

- 1 have to get up early and take a lot of time to review
- 2 the material, and I just hope everyone knows that we
- 3 really appreciate your contribution to the meeting.
- 4 And with that, we can adjourn. Thank you.
- 5 DR. HANA EL SAHLY: I forgot to thank Marion
- 6 and the rest of the members at CBER. Thank you all
- 7 very much.
- 8 MS. KATHLEEN HAYES: Thank you, Dr. El Sahly.
- 9 Thanks, everybody. Have a good afternoon.
- 10 UNIDENTIFIED FEMALE: Thank you.
- 11 MR. MICHAEL KAWCZYNSKI: All right. And thank
- 12 you, and with that the 165th meeting of the VRBPAC is
- 13 adjourned. Have a great rest of the week.

14

15 [MEETING ADJOURNED FOR THE DAY]

16

